Как работают светодиодные лампочки

0

Как работают светодиодные лампочки

Устройство светодиодной лампы, принцип работы светодиода

Светодиод представляет собой двухпроводный полупроводниковый источник света. Когда подходящий ток подается на выводы, электроны способны рекомбинировать с электронными дырами внутри устройства, выделяя энергию в виде фотонов. Этот эффект называется электролюминесценцией, а цвет света определяется зазором энергетической зоны полупроводника.

Что такое светодиод

Светоизлучающий диод является оптоэлектронным устройством, способным излучать свет, когда через него проходит электрический ток. Светоизлучающий диод только пропускает электрический ток в одном направлении и производит некогерентное монохроматическое или полихроматическое излучение от преобразования электрической энергии.

Он имеет несколько производных:

Из-за световой эффективности светодиоды на современном этапе представляют собой 75% рынка внутреннего и автомобильного освещения. Они используются при строительстве телевизоров с плоским экраном, а именно: для подсветки ЖК-экранов или источника электроэнергии. Используются в качестве основного освещения в OLED-телевизорах.

Первые светодиоды, поступившие в продажу, производили инфракрасный, красный, зеленый, а затем желтый свет. Выход синего светодиода, связанный с техническим и монтажным прогрессом, позволяет покрыть диапазон длины волны излучения, простирающийся от ультрафиолетового (350 нм) до инфракрасного (2 тыс. нм), который отвечает многим потребностям. Многие устройства оснащены составными светодиодами (три в одном компоненте: красный, зеленый и синий) для отображения многих цветов.

Светодиодная лампа

Светодиодные лампы — это светотехнические изделия для бытового, промышленного и уличного освещения, в которых источником света являются светодиоды. По сути это набор светодиодов и схемы питания для преобразования сетевой энергии на постоянный ток низкого напряжения.

Светодиодный светильник представляет собой отдельное и самостоятельное устройство. Его корпус чаще всего индивидуален по конструкции и специально спроектирован под различные источники освещения. Большое количество ламп и их малый размер позволяют расположить их в разных местах, собирать панели, использовать для подсветки дисплеев, телевизоров .

Освещение общего назначения требует белого света. Принцип работы светодиодной лампы основан на излучении света в очень узком диапазоне длин волн: то есть, с цветовой характеристикой энергии полупроводникового материала, который используется для изготовления светодиодов. Для излучения белого света от светодиодной лампы надо смешивать излучения от красного, зеленого и синего светодиодов или использовать люминофор для преобразования частей света в другие цвета.

Один из методов — RGB (red, green, Blue), это использование нескольких светодиодных матриц, каждая из которых излучает различную длину волн, в непосредственной близости, для создания общего белого цвета.

История создания первых ламп

Первое излучение света полупроводником датируется 1907 годом и было открыто Генри Джозефом Раундом. В 1927 году Олег Владимирович Лосев подал первый патент на то, что впоследствии будет называться светоизлучающим диодом.

В 1955 году Рубин Браунштейн обнаружил инфракрасное излучение арсенида галлия — полупроводник, который позже будет использоваться Ником Холоньяком-младшим и С. Беваккой для создания первого красного светодиода в 1962 году. В течение нескольких лет исследователи ограничились некоторыми цветами, такими как красный (1962), желтый, зеленый и более поздний синий (1972).

Вклад японских ученых

В 1990-х годах исследования Shuji Nakamura и Takashi Mukai of Nichia в полупроводниковой технологии InGaN позволили создать синие светодиоды высокой яркости, а затем адаптироваться к белым, добавив желтый люминофор. Это продвижение позволило использовать новые крупные приложения, такие как освещение и подсветка телевизионных экранов и ЖК-экранов. 7 октября 2014 года Шудзи Накамура, Исаму Акасаки и Хироши Амано получили Нобелевскую премию по физике за работу над голубыми светодиодами.

Принцип работы устройства

Когда диод смещен вперед, электроны быстро движутся через соединение. Они постоянно объединяются, удаляя друг друга. Вскоре, после того как электроны начинают движение от n-типа к кремнию p-типа, диод соединяется с отверстиями, а затем исчезает. Следовательно, он делает полный атом более стабильным и дает небольшой импульс энергии в виде фотона света.

Принцип образования световой волны

Чтобы разобраться как устроен светодиод, необходимо узнать о его материалах и их свойствах. Светодиод представляет собой специализированную форму PN-перехода, которая использует составное соединение. Составным должен быть полупроводниковый материал, используемый для соединения. Обычно используемые материалы, включая кремний и германий, являются простыми элементами, и соединение, изготовленное из этих материалов, не излучает свет. Что же касается таких полупроводников, как арсенид галлия, фосфид галлия и фосфид индия — они являются составными, и соединения из этих материалов излучают свет.

Эти составные полупроводники классифицируются по валентным зонам, которые занимают их составляющие. Арсенид галлия имеет валентность трех, а мышьяк — валентность пяти. Это и называют полупроводником группы III-V. Существует ряд других полупроводников, которые соответствуют обозначенной категории. Есть полупроводники, которые образуются из материалов группы III-V.

Светоизлучающий диод излучает свет, когда он смещен вперед. Когда напряжение накладывается на соединение, чтобы заставить его смещаться вперед, ток течет, как и в случае любого PN-соединения. Отверстия из области р-типа и электроны из области n-типа входят в соединение и рекомбинируют, как нормальный диод, чтобы обеспечить протекание тока. Когда это происходит, выделяется энергия.

Обнаружено, что большая часть света получается из области перехода ближе к области Р-типа. Конструкция диодов выполнена таким образом, что эта область располагается как можно ближе к поверхности устройства для поглощения конструкцией минимального количества света.

Чтобы получить свет, который можно увидеть, соединение следует оптимизировать, а материалы должны быть правильными. Чистый арсенид галлия выделяет энергию в инфракрасной части спектра. Для приведения световой эмиссии алюминий добавляется к полупроводнику в видимый красный спектр с последующим получением арсенида аргицида галлия (AlGaAs). Можно добавить и фосфор, чтобы получить красный свет. Для других цветов используются иные материалы. Например, фосфид галлия дает зеленый свет, а фосфид алюминия кальция используется для получения желтого и оранжевого света. Большинство светодиодов основаны на галлиевых полупроводниках.

Квантовая теория

Поток тока в полупроводниках обусловлен обоими потоками свободных электронов в противоположном направлении. Следовательно, будет рекомбинация из-за потока этих носителей заряда.

Рекомбинация показывает, что электроны в зоне проводимости спускаются к валентной зоне. Когда они перескакивают из одной полосы в другую, то излучают электромагнитную энергию в виде фотонов, а энергия фотона равна запрещенной энергетической щели.

Отображено математическое уравнение:

H известна как постоянная Планка, а скорость электромагнитного излучения равна скорости света. Частотное излучение связано со скоростью света как f = c / λ. λ обозначается как длина волны электромагнитного излучения, а уравнение станет таким:

Исходя из этого уравнения можно понять, как работает светодиод, основываясь на том, что длина волны электромагнитного излучения обратно пропорциональна запрещенной щели. В целом полное излучение электромагнитной волны при рекомбинации имеет вид инфракрасного излучения. Невозможно увидеть длину волны инфракрасного излучения, потому что она находится вне видимого диапазона.

Инфракрасное излучение называется теплотой, потому что кремний и германиевые полупроводники не являются прямыми щелевыми полупроводниками, а относятся к непрямым промежуточным разновидностям. Но в полупроводниках с прямым зазором максимальный уровень энергии валентной зоны и минимальный уровень энергии зоны проводимости не происходит одномоментно с электронами. Поэтому во время рекомбинации электронов и дырок происходит миграция электронов из зоны проводимости в валентную зону, и импульс электронной зоны будет изменен.

Преимущества и недостатки

Как и любое устройство светодиод также имеет ряд своих особенностей, основные преимущества и недостатки.

Главные преимущества выглядят так:

  • Небольшие размеры: например, можно изготавливать светодиоды размером с пиксель (что открывает возможность использования диодов для создания экранов с высоким разрешением).
  • Простота сборки на печатной плате, традиционная или CMS (компонент с поверхностным монтажом).
  • Потребление электрической энергии ниже, чем у лампы накаливания, и того же порядка величины, что и люминесцентные лампы.
  • Отличная механическая устойчивость.
  • Собирая несколько светодиодов, можно добиться хорошего освещения с помощью инновационных форм.
  • Продолжительность жизни (приблизительно от 20 000 до 50 000 часов), что намного дольше, чем обычная лампа накаливания (1 тыс. часов) или галогенная лампа (2 тыс. часов). Тот же порядок величины, что и у люминесцентных ламп (от 5 тыс. до 70 000 часов).
  • Очень низкое напряжение, гарантия безопасности и легкость транспортировки. Для отдыхающих есть светодиодные фонарики, питаемые простым ручным динамомедленным движением («кривошипная лампа»).
  • Световая инерция почти нулевая. Диоды включаются и выключаются за очень короткое время, что позволяет использовать при передаче сигналов ближнего (оптопары) или дальнего (оптического волокна) сигналов. Они сразу достигают своей номинальной силы света.
  • Благодаря своей мощности классические 5-миллиметровые светодиоды едва нагреваются и не могут обжечь пальцы.
  • Светодиоды RGB (красный-зеленый-синий) позволяют использовать цветные улучшения с неограниченными возможностями вариаций.

Из недостатков можно отметить такие:

  • Светодиоды, как и любой электронный компонент, имеют максимальные пределы рабочей температуры, а также некоторые пассивные компоненты, составляющие их схему питания (например, химические конденсаторы, которые нагреваются в зависимости от среднеквадратичного тока). Теплоотдача компонентов светодиодных лампочек является фактором, ограничивающим увеличение их мощности, особенно в многочиповых сборках.
  • По словам производителя Philips, световая эффективность некоторых светодиодов быстро падает. Температура ускоряет падение световой эффективности. Philips также указывает, что цвет может меняться на некоторых белых светодиодах и светится зеленым, когда они становятся старше.
  • Процесс изготовления светодиода очень энергозатратный. Зная основные характеристики светодиодов, их преимущества и недостатки, можно сделать выбор — либо приобрести их, либо отказаться от покупки и пользоваться обыкновенными лампами накаливания. Однако учитывая экономичность такого освещения, стоит задуматься над тем, что оно может стать хорошей альтернативой привычным, более дешевым источникам света.

Как устроена и из чего состоит светодиодная лампа

Освещение играет важную роль в жизни человека. Оно бывает основным, акцентным, декоративным. Для создания подсветки используются различные источники света. Самыми современными, надежными и качественными приборами являются светодиодные лампы. Они имеют множество преимуществ перед классическими источниками света. Однако устройство светодиодной лампочки сложнее.

Принцип работы

Основа светодиода – полупроводниковый кристалл, состоящий из двух материалов разной проводимости.

Принцип работы светодиодной лампы заключается в следующем: при подаче электрического тока происходит переход частиц из одного полупроводника в другой, сопровождающийся созданием частицы света – фотона. Оба полупроводника способы пропускать ток только в одном направлении, поэтому при подключении важно соблюдать полярность. Во время подачи тока протекают и другие процессы. Часть энергии тратится на выделение тепла.

Читать еще:  Как обыграть батарею в комнате на стене

Светодиоды применяются в самых разных сферах: для создания освещения в доме, на производстве, в административных помещениях. С их помощью делается рекламная, художественная и архитектурная подсветка. Светодиоды можно встретить в фонарях для уличного освещения.

Преимущества светодиодных ламп

Современные источники света должны быть экономичными, эффективными и безопасными. Светодиоды полностью подходят под эти характеристики. Для работы светоизлучающего диода требуется небольшое количество энергии, при этом они выдают яркое освещение с минимальным выделением тепла. Светодиодные источники света обладают пониженной чувствительностью к скачкам в сети и имеют большое количество циклов включения и выключения. При подаче напряжения они загораются сразу, не нужно время для разогрева. Светодиоды для ламп освещения выгодно отличаются от других источников света своим долгим сроком службы – до 50000 часов.

Безопасность светодиодов заключается в отсутствии в них вредных компонентов. В колбе отсутствуют пары ртути и смесь инертных газов, поэтому они не требуют особых условий утилизации. Также светодиоды выполняются в прочном качественном корпусе. Устройства имеют низкий коэффициент пульсаций, поэтому они безопасны для человеческого здоровья.

Недостаток, ограничивающий широкое распространение светодиодных приборов – высокая стоимость.

Устройство светодиодных источников

Общая конструкция ламп идентична, могут быть небольшие отличия. Они сложнее с технической точки зрения, чем лампы накаливания. Чтобы узнать, из чего состоит лампочка, ее нужно разобрать, в то время как в классическом источнике света с нитью накала просмотреть внутреннюю часть можно через стеклянную колбу.

Из чего состоит светодиодный светильник:

  • Led. В лампе устанавливается один или несколько светодиодов. Они отличаются по мощности, цвету свечения, размерам. Количество диодов в матрице может быть различным, вычисляется на производстве для обеспечения оптимального уровня света. Диоды припаиваются к алюминиевой или текстолитовой плате разных размеров и форм. Группы соединяются друг с другом последовательно.
  • Драйвер. Используется для преобразования сетевого напряжения в необходимую для работы светодиодов величину. Схемы драйверов бывают разными, чаще всего применяются трансформаторные. По конструкции выделяют открытые и закрытые, которые устанавливаются прямо в корпус лампочки. В дешевых китайских изделиях часто ставятся некачественные драйверы, которые неэффективны и могут навредить здоровью.
  • Цоколь. Светодиодные лампочки пришли на замену лампам накаливания, поэтому устанавливаться должны аналогичным образом. Изготавливаются приборы со стандартными цоколями Е27 и Е14.
  • Корпус. Колба изготавливается из пластика или стекла. Полная герметичность не требуется, так как в составе нет вредных паров ртути и газов.
  • Радиатор. Так как во время работы выделяется некоторое количество тепла, его нужно отвести, чтобы не было перегрева. Алюминиевая плата понижает негативное влияние температуры, но этого может быть недостаточно. Поэтому дорогие качественные лампочки дополнительно оснащаются радиаторами.

Ассортимент изделий с цоколем Е14 и Е27 можно разделить на три категории — брендовые, низкокачественные и филаментные.

Брендовая продукция

Устройство светодиодного светильника, изготовленного известной компанией, обязательно включает в себя:

  • Рассеиватель в форме полусферы. Может изготавливаться из пластика или стекла.
  • Алюминиевая печатная плата на теплопроводящей пасте.
  • Набор чипов.
  • Драйвер. Состоит из импульсного трансформатора, микросхем, полярных конденсаторов, планарных элементов. Также является соединителем цоколя и радиатора.
  • Основание цоколя из полиэтилентерефталата.
  • Цоколь с резьбой необходимого диаметра, выполненный из латуни с никелевым покрытием.

В качественном приборе обязательно есть радиатор. Он объемный и окрашивается белым полимером. Увеличивает вес и габариты лампочки, но является обязательным элементом для стабильной работы.

Низкокачественные изделия

Приборы неизвестного производства обычно имеют низкую стоимость. Это связано с использованием некачественных материалов и отсутствием важных деталей – радиатора и драйвера. Вместо драйвера применяется обычный блок питания, размещенный рядом со светодиодами. Роль радиатора выполняет корпус, в котором проделывают отверстия. Такой способ малоэффективен, поэтому дешевые лампочки быстро выходят из строя.

Плата крепится к корпусу при помощи специальной защелки. Цоколь и плата соединяются пайкой. Такое соединение не может обеспечить высокую надежность и продолжительную работу светодиодов.

Филаментные приборы

Внешне филаментная лампочка похожа на лампу накаливания. Ее важное отличительное свойство – не требуется дополнительный отвод тепла. Такая светодиодная лампочка состоит из филамента и колбы.

Работает на основе светодиодных нитей. Их количество выбирается в зависимости от мощности лампы. Светодиоды размещены на тонком стеклянном стержне – эта конструкция и называется филаментом. По всей длине нанесен люминофор, поэтому лампа желтая. Отвод тепла производится через колбу, внутри которой находится смесь газов.

К недостаткам филаментной лампы можно отнести высокий коэффициент пульсаций. Частое моргание негативно влияет на зрение и психику человека, поэтому ведутся работы по модернизации конструкции лампы. Драйвер высокого качества должен устанавливаться в пластиковую вставку в виде кольца между колбой и цоколем.

Способы сборки

Светодиодные лампы можно разделить на несколько категорий по способу сборки:

    Dip (dual inline package). Это самая старая и простая конструкция. Представляет собой светодиод, расположенный в защитном цилиндрическом корпусе, с двумя или более выводами. Светят ярко, различаются широкой цветовой гаммой и малым нагревом. Бывают одноцветные и многоцветные.

Самой распространенной технологией является COB.

Рекомендации по проверке лампы при покупке

Покупая осветительное изделие, его следует визуально осмотреть в магазине. Корпус должен быть без царапин и вмятин. Нужно убедиться в наличии радиатора. Он может быть монолитным или наборного типа. Размеры зависят от мощности лампы – чем она выше, тем крупнее радиатор.

Также проверяется цоколь. Он должен быть без механических дефектов и люфтов. По возможности нужно проверить работоспособность лампы путем подключения к электросети. На свет нужно посмотреть через камеру телефона, чтобы убедиться в отсутствии пульсаций. Если заметны мигания, лампа некачественная, покупать ее не рекомендуется.

Прежде чем сделать выбор, стоит внимательно изучить технические характеристики: на сколько вольт светодиоды в лампе, цветовую температуру, коэффициент пульсаций.

Как устроена светодиодная лампа и принцип ее работы

По сравнению с обычными лампами накаливания устройство светодиодной лампы с технической точки зрения сложнее. Если для первых используется прозрачный стеклянный корпус, то в случае со вторыми разглядеть что-либо находящееся внутри не выйдет. Для того чтобы узнать, из чего состоит такой источник света, необходимо разобрать его на части.

Общее устройство светодиодных лампочек, независимо от производителя, практически идентичное (с небольшими отличиями). Ассортимент стандартных изделий с цоколем E14 или E27 делится на три категории — фирменные, низкосортные китайские и филаментные.

Низкокачественные китайские лампочки

При разборе фирменной лампы можно обнаружить все необходимые для надежности и долговечности конструктивные элементы. Но если заглянуть под корпус дешевого китайского изделия, то первое, чего вы не обнаружите — радиатор и драйвер.

Драйвер обычно заменяют блоком питания с неполярным конденсатором, неспособным стабилизировать ток на выходе. Устанавливают такой блок в центр платы с диодами. Если взглянуть на нее сверху, то можно увидеть диодный мост с резисторами, снизу — два конденсатора. Это позволяет существенно уменьшить стоимость и качество изделия.

Для охлаждения прибора в корпусе проделывают небольшие отверстия. Эффективность низкая, кристаллы очень быстро перегорают. Плата установлена на пластиковом корпусе и закреплена защелками. Для соединения с цоколем используют два спаянных провода.

Филаментные лампы

Филаментный источник света внешне напоминает лампу накаливания, но конструктивно остается светодиодным изделием. В таком случае пропадает необходимость в отводе тепла, но применение устройств в бытовой сфере связано с исключительно эстетическими соображениями.

Основной элемент филаментного прибора — светодиодная нить. В зависимости от количества таких нитей производят изделия разной мощности. Филамент — тонкий стержень из стекла, на поверхности которого имеются SMD-диоды. Верхняя часть покрывается люминофором, дающим желтый оттенок. Для отвода тепла применяют стеклянную колбу, внутренняя часть которой заполняется газом.

Из-за отсутствия места для драйвера внутри производители размещают низкокачественный модуль питания. Это повышает пульсацию, негативно сказывающуюся на зрительных органах. Для избавления от мерцания между цоколем и колбой добавляется пластиковое кольцо с качественным драйвером.

Принцип действия светодиодных ламп

Принцип работы этих приборов построен на сложных физических процессах. При подаче электрического тока происходит соприкосновение двух веществ, изготовленных из разносортных материалов. Это приводит к образованию светового потока.

Парадоксальность системы связана с тем, что ни один из материалов, используемых для изготовления двух веществ, не относится к проводникам электрического тока. Это полупроводники, способные пропускать ток только в одном направлении. Поэтому при подключении светодиодов важно соблюдать полярность. Один материал наделен отрицательными электронами, а другой — положительными ионами.

Также в полупроводниках активизируются иные процессы. В момент смены состояния выделяется тепловая энергия. Экспериментальным методом изобретатели нашли нужное сочетание веществ, при котором помимо энергии появляется и световое излучение.

Все приборы, которые пропускают ток в одном направлении, называются диодами. Светодиоды — диоды, способные выделять световой поток.

Первые LED-диоды излучали свет в узком спектре — красном, желтом или зеленом. При этом сила свечения была минимальной. В течение продолжительного отрезка времени светодиоды использовались исключительно как индикаторы. Сегодня диапазон излучения значительно расширен и охватывает едва ли не весь спектр. С другой стороны, определенные волны всегда длиннее, поэтому данные устройства делятся на источники холодного и теплого света (в зависимости от тепловой температуры).

Способы сборки

По способу сборки изделия делятся на несколько категорий.

DIP расшифровывается как Dual In-line Package. Конструкция приборов интересна, но существенно устарела. Выделяют следующие размеры светодиодов:

Также полупроводниковые изделия различаются цветом, материалом изготовления, формой чипа. Из преимуществ DIP-сборки выделим малый нагрев и высокую яркость. Бывают одноцветные и многоцветные (RGB-технология). Можно распознать по характерной цилиндрической форме и встроенной линзе выпуклого типа.

«Пиранья»

Данная группа осветительных устройств характеризуется высоким световым потоком. Изготавливаются прямоугольной формы, имеют четыре PIN-вывода, бывают красными, синими, белыми или зелеными.

Читать еще:  Как приклеить лист пенопласта к потолку

По сравнению с DIP-технологией изделия более жестко и прочно «сидят» на плате. Свинцовая подложка повышает теплопроводность, но в то же время понижает общую безопасность при эксплуатации. Широкая распространенность обусловлена большим диапазоном рабочих температур.

SMD-технология

SMD расшифровывается как Surface Mounting Device (в переводе с англ. — «устройство, фиксируемое на поверхности»). Эти светодиоды характеризуются мощностью в диапазоне 0,01–0,2 Вт. Главная особенность связана с наличием нескольких кристаллов (1–3), монтируемых на керамическую подложку.

Корпус покрыт люминофором. Стандартный припой используется для соединения основной платы и контактных площадок.

Из недостатков выделим низкую ремонтопригодность: если выйдет из строя хотя бы один диод, то придется заменять целую плату.

COB-технология

Последняя и наиболее надежная технология изготовления светодиодов получила название Chip On Board (COB). Полупроводники крепятся на плату без корпуса и какой-либо подложки, после чего покрываются люминофором.

Главное преимущество связано с небольшой площадью свечения при высокой мощности. Равномерное свечение изделия гарантируется высокой плотностью светодиодов и наличием люминофора. Такие светодиоды чаще применяются в наши дни.

Устройство светодиодных источников света

Светодиодный источник состоит из следующих конструктивных элементов:

Светодиоды

Несколько лет назад конструкция светодиодной лампы незначительно отличалось из-за отсутствия широкого ассортимента LED-диодов. Самыми распространенными были чипы на 3–5 мм. Позже появились изделия на 10 мм.

Сегодня светодиодов намного больше. Чаще всего используются SMD 5050, SMD 3528, SMD 5730, SMD 2835, 1W, 3W и 5W.

Количество светодиодов бывает разным, его задает производитель. При монтаже нескольких диодов производят специальные расчеты, чтобы вывести оптимальный ток потребления. Припой осуществляется к текстолитовым или алюминиевым платам. Светодиоды собираются в группы, соединяемые последовательно. Опять же, количество групп неограниченно.

Последовательное соединение обеспечивает постоянный ток, но есть существенный недостаток — если выйдет из строя хотя бы один LED-диод, то перестает работать все изделие. С другой стороны, диод можно без проблем заменить на новый.

Платы, к которым припаиваются источники света, классифицируются по форме и бывают круглыми, прямоугольными, овальными, многоугольными и т. д.

Драйверы

Драйверы предназначены для преобразования входящего напряжения в пригодную для питания устройства величину. Причем питание для каждой группы светодиодов может быть разным. Самыми распространенными являются трансформаторные схемы с драйверами.

Конструктивные элементы могут быть двух типов — открытыми и закрытыми (в корпусе). Монтируют их в корпус ламп, осветительных приборов.

Дешевые драйверы применяют в обычных фонариках, в которых светодиоды питаются от батареек. В таком случае нет необходимости в резисторе, ограничивающем ток. Из-за этого диоды могут получать повышенный ток, что приводит к их скорому выходу из строя.

Китайские производители нередко пытаются сэкономить на приборах, устанавливая вместо драйверов обычные ограничители тока со схемой на основе конденсатора. Избегайте покупки таких изделий, поскольку помимо крайней неэкономичности они негативно воздействуют на здоровье человека (высокая пульсация).

Цоколь

Поскольку светодиодные изделия позиционируются как лучшие аналоги лампам накаливания, то нет ничего удивительного в том, что они изготавливаются со стандартными цоколями — E27 и E14. Последние часто применяются в ночных и настенных светильниках.

За рубежом иные стандарты, поэтому там чаще можно встретить светодиодные лампы E26.

Корпус

В отличие от ламп накаливания для светодиодных нет необходимости в полной герметичности колб, да и газовая среда внутри отсутствует. Одна из разновидностей светодиодных светильников — филаментный источник, повторяющий устройство лампы накаливания и нуждающийся в газовой среде.

Потребляя то же количество электроэнергии, изделия светят намного ярче аналогов. Обычная светодиодная лампа имеет закрытую колбу, производимую из стекла или пластика. Матовое покрытие понижает светопропускаемость, но это незначительные издержки производства.

Радиаторы

Данные электротехнические изделия боятся высокой температуры и перегрева. По этой причине для повышения срока эксплуатации необходимо устройство для отвода тепла. Алюминиевые платы частично снижают влияние перегрева, но этого недостаточно. Дорогие и качественные лампы обязательно используют радиаторы, размер которых зависит от количества светодиодов в приборе.

Наличие радиатора повышает стоимость и габариты изделия, но является обязательным условием для создания качественного и долговечного прибора.

Компоновка составных частей

В зависимости от производителя, устройство и конструкция лампы разные. С другой стороны, общий принцип компоновки остается одинаковым. Сборка начинается с цоколя, куда последовательно устанавливают драйвер, радиатор, плату с LED-диодами и колбу.

Для сравнения рассмотрим устройство изделия от двух производителей.

Светодиодная лампа BBK

Цоколь изготавливается из пластика. Внутри установлен качественный драйвер. Для корпуса используется алюминий, выполняющий функции радиатора. Туда крепится плата с диодами и линза. Наличие данной линзы понижает световую отдачу прибора.

Лампа Gauss

Опять же цоколь изготовлен из пластика, имеются драйвер и алюминиевый корпус с установленной диодной платой. Конструкция гарантирует долговечность изделия.

Как проверить светодиодную лампу при покупке

Возьмите в руки светодиодную лампу и осмотрите ее внешне, чтобы убедиться в отсутствии каких-либо изъянов. Выполнить это можно только при условии применения прозрачной колбы. Для начала проверьте радиатор (он выпускается литого или наборного типа). Чем выше мощность изделия, тем объемнее должен быть радиатор. Отличным вариантом станет применение алюминиевых или керамических охладителей.

В идеале электротехнический элемент нужно покрыть термопластиком. Убедитесь, что в цоколе отсутствуют люфты и механические дефекты. Также в любом магазине есть возможность подключить лампу к электрической сети, чтобы проверить ее работоспособность. Сделав это, взгляните на излучаемый свет. Используйте фотокамеру на смартфоне, чтобы убедиться в отсутствии мерцания и пульсации. Ни в коем случае не покупайте лампу, которая мерцает при работе.

Полученной информации по устройству и принципу работы светодиодной лампы может быть недостаточно для выбора качественного осветительного прибора, характеризующегося безопасностью, надежностью и долговечностью. Также нужно учитывать другие критерии, включая характеристики и производителя, о чем подробно описано в этой статье.

Как устроена светодиодная лампа?

Современное поколение стремится минимизировать свои расходы. Преимуществом светодиодного светильника является малое потребление электроэнергии. При потребляемой мощности в 10 Вт светодиодная лампа дает такую же освещенность, как лампа накаливания в 100 Вт. Этот показатель также больше в 2 раза, чем в люминесцентных лампах.

Еще одним плюсом является намного больший в сравнении с лампой накаливания рабочий ресурс. Сочетание малого потребления мощности с высокой долговечностью компенсируют высокую стоимость.

В этой статье рассмотрено устройство светодиодной лампы, которая состоит из таких элементов:

  • рассеиватель;
  • светодиод;
  • радиатор;
  • драйвер;
  • цоколь.

Схематическое изображение светодиодной лампы.

Устройство и принцип работы

Конструкция светодиодной лампы довольно сложная. Рассмотрим ее строение и назначение основных элементов.

Источником света в светодиодной лампе является светоизолирующий диод, состоящий из полупроводникового кристалла, имеющего два вывода (катод и анод) и оптической системы. Далее по тексту будет использована аббревиатура СД или LED.

Рассмотрим принцип работы светодиодной лампы. При прохождении электрического тока через полупроводник в прямом направлении, носители заряда (электроны и дырки) осуществляют рекомбинацию. В результате этого происходит оптическое излучение фотонов (из-за перехода электронов на другой энергетический уровень).

Также в лампе находится драйвер (специальная микросхема), который обеспечивает питание светодиода. Радиатор (система охлаждения) собирает и выводит излишнее тепло. Рассеиватель минимизирует потери света.

На схемах светодиоды условно обозначаются как диоды со стрелками, которые обозначают оптическое излучение (рис. 2).

Схематическое изображение светодиода

Простейшая схема LED-лампы

Особенностью схемы, изображенной на рис. 3, является 2 светодиода, работающих встречно-параллельно. В этом варианте расположения каждый светодиод выполняет защитную функцию. Препятствует поражению обратным напряжением сети другого светодиода, а также увеличивает частоту пульсации LED-лампы до значения 100 Гц. Такой показатель частоты будет благоприятно влиять на ваше зрение.

Один из СД можно заменить на выпрямительный диод, выполняющий защитную функцию. Включается он в схему в направлении заменяемого СД. В этой компоновке элементов частота пульсации СД равняется 25 Гц.
Резистор R1 должен быть мощностью не меньше 5 Вт и сопротивления 10-11 кОм. Тогда протекающий ток в СД будет равен 20 мА. Сопротивление R1 выбирается согласно величине номинального прямого тока СД.
Данную лампу возможно сделать в корпусе испорченной компактной ЛЛ.

Простейшая схема LED-лампы

Строение светодиодных устройств различных фирм-производителей

Устройство СД-ламп напряжением 220 В различных фирм-производителей имеет небольшие отличия. Весь выбор светодиодных ламп условно разделяется на несколько групп: брендовые, низкого качества и филаментные.

Брендовые продукты

Конструктивное исполнение СД-лампы от лидирующих брендов, производящих СД-изделия, обязательно включает в себя:

  • рассеиватель;
  • чипы;
  • печатная плата из алюминия на теплопроводимой пасте (гарант оптимальной температуры режима работы чипов);
  • драйвер, построенный по схеме гальванически развязанного широтно-импульсного модулятора стабилизатора тока;
  • основание цоколя, выполненное из полиэтилентерефталата. Работает как надежная защита от пробивания электрическим током;
  • латунный цоколь с никелевым покрытием. Антикоррозийный материал, создающий надежный контакт с патроном.

LED-лампа в разрезе

Главным видимым отличием лампы из этой группы является объемный радиатор, окрашенный белым полимером. Его поверхность может быть как гладкой, так и ребристой. Если сравнивать такую светодиодную лампу с более дешевыми представителями, то она имеет большую массу.

Материалом рассеивателя может быть стекло или пластик. Неизменной остается его форма – полусфера. Элементами крепежа рассеивателя к радиатору могут послужить защелки или усадка на герметик. Под ним расположена плата с SMD-светодиодами, надежно зафиксированная на радиаторе. Еще ниже размещена плата драйвера. В состав схемы драйвера входят:

  • импульсный трансформатор,
  • микросхемы,
  • полярные конденсаторы,
  • огромное количество планарных элементов.

Она имеет большую плотность манжета. Драйвер находится под корпусом лампы и является соединителем цоколя и радиатора. Связь блока драйвера с платой осуществляется посредством пайки или контактора.

Изделия низкого качества

Отличительной чертой ламп низкого качества является возможное отсутствие таких элементов, как радиатор и драйвер. Функцию драйвера выполняет простейший блок питания. Он не может преобразовать переменный ток в постоянный. Блок питания расположен в центральной части платы рядом со светодиодами. Перфорация корпуса выполняет роль радиатора в лампе. Из-за малоэффективной функции охлаждения перегрев и выход из строя СД неизбежны.

Крепеж платы к корпусу производится за счет защелки. Электрическое соединение платы с цоколем осуществляется за счет пайки. Эта конструкция является простой, но не может обеспечить надежность и продолжительную работу светодиодным лампочкам.

Читать еще:  Как отучить кота какать в неположенном месте

Филаментные лампы (ФЛ)

Разработка светодиодных ламп не стоит на месте. Следующей новинкой на рынке светотехнических изделий стала филаментная лампа.

Филаментная лампа

Дословно с английского «филамент» означает нить. Визуально эта лампа похожа на лампу накаливания. Отличительной чертой ФЛ является то, что она не требует дополнительного теплоотвода. Ее использование в быту имеет как практическое, так и эстетическое применение.

Подробнее рассмотрим строение филаментной лампы. Количество светодиодных нитей (основных элементов ФЛ) прямо пропорционально мощности лампы. Тонкий стержень из стекла, на котором расположены SMD-светодиоды, имеющие электрическую связь между собой – это и есть филамент. Желтый цвет ФЛ обусловлен нанесенным по всей длине люминофором. Теплоотвод в этом изделии осуществляется через колбу, заполненную газовой смесью.

Нередко фирмы-производители вынуждены располагать низкокачественный модуль питания в цоколе ФЛ. Это связано с недостатками конструкции филаментной лампы, что приводит к увеличению коэффициента пульсации, который отрицательно влияет на зрение. Чтобы устранить этот недостаток, ведется работа над модернизацией конструкции ФЛ. Для размещения драйвера высокого качества делается вставка из пластика в виде кольца. Она располагается между колбой и цоколем.

Лампы светодиодные – принцип работы и советы по выбору

Потребность в мощных, но экономичных источниках света – это один из приоритетов сегодняшнего дня. В связи с этим растёт интерес к светодиодам, СИД или LED-лампам.

Производители называют их самыми долговечными (от 25 до 100 тыс. часов работы), и обещают экономичность в 5, а то и 10 раз превышающую классическую лампу накаливания.

Кроме того, LED технологии дают огромный простор для дизайна освещения, поскольку могут быть самых разных форм и размеров. Выпускаются в виде гибких лент с разным цветом свечения и возможностью плавно менять яркость и цвет.

Чем же так хороши лампы светодиодные? Принцип работы, виды, схемы, особенности, и всё, что нужно знать, выбирая LED, в статье далее.

Принцип работы светодиодных ламп

Рассмотрим, как работает светодиодная лампа. Светодиодные кристаллы являются полупроводниками. Они испускают свет при пропускании через них электрического тока в одном направлении.

Многих интересует, при какой температуре работают светодиодные лампы. От лампы накаливания, которая чтобы засветиться должна накалиться более чем до 2000 °C, здесь есть принципиальное отличие.

Простая схема диодной лампы

Свет получается за счёт движения свободных электронов, которые стремятся от минуса к плюсу (к дыркам). Температура нагрева светодиода всего 38 °C.

Конструкция ламп на светодиодах

Лед-лампочек огромное множество видов, все они очень непохожи внешне друг на друга. И технологии продолжают развиваться, так что видовое разнообразие в будущем будет только возрастать. Но базовый состав элементов и принцип работы примерно одинаков для всех них.

В конструкцию лампы входит:

  • Цоколь. Элемент, вкручивающийся в патрон должен ему соответствовать. Цоколи могут быть резьбовыми и штырьковыми. Существ более 10 видов цоколей, с которыми выпускаются светодиоды. Подробнее о них в разделе «Выбор цоколя».
  • Основание цоколя. Полимерное основание защищает корпус от пробоя тока.
  • Драйвер. На миниатюрной печатной плате располагаются устройства, обеспечивающие стабилизацию напряжения, преобразование переменного тока в постоянный.
  • Радиатор. Это ребристый элемент, предназначенный для отвода тепла от светодиодов. Ведь отличие светодиодов от всех остальных типов ламп в том, что их зона максимальной температуры располагается внутри, под чипами светодиодов. Промежуточным звеном здесь является металлическая плата, которая передаёт тепло дальше на радиатор. Хорошее «проветривание» – важное условие для долговечной работы светодиода.
  • Светодиоды. Полупроводниковый многослойный кристалл с основой для подключения питания. В одном осветителе их может быть от нескольких штук до нескольких десятков.
  • Рассеиватель. Призван распределять свет от кристалла. Это может быть направленный пучок, или полусфера, рассеивающая свет под большим углом. Поскольку светодиоды не греют рассеиватель, его делают из поликарбоната или пластика.

Конструкция светодиодной лампочки

В отличие от обычных энергосберегающих лампочек, для LED не требуется специальная утилизация! Они более прочны и могут «пережить» падение с небольшой высоты.

Схемы светодиодных источников света

Схема светодиодной лампы может быть полезна тем, кто задумал сделать такой осветитель своими руками.

  • цоколь от ненужной лампочки;
  • светодиоды;
  • и схема питания.

Простая схема источника питания светодиодной лампы

На входе конденсатор C1 пропускает напряжение на диодный мост. Параллельно установлен резистор для ограничения тока подачи. За диодным мостом впаян фильтр из конденсатора C2. Резисторы R2 и R3 нужны для разряда конденсаторов после выключения.

Для защиты конденсатора установлен шунт из стабилитронов VD2, VD3, защищающий конденсатор от пробоя. Параллельно стабилитрону располагаются 20 светодиодов.

Мощный свет от прожектора очень удобен для освещения дачного участка или двора. Как подключить светодиодный прожектор – руководство по самостоятельному монтажу.

Почему часто перегорают лампочки и можно ли этого избежать, вы узнаете, прочитав эту статью.

Схему подключения лампы дневного света вы найдете в данном материале.

Виды светодиодных ламп

Питание 4 В

Отдельные светодиоды могут использоваться для шопмоддинга, или любителями самодельных альтернативных источников энергии, например для запитывания от маломощных ветряных установок, для ремонта при замене вышедших из строя элементов в лампах и т. д. Выпускаются светодиоды рассчитанные на напряжение от 1 до 4,5 В и дающие разный цвет, от инфракрасного до ультрафиолетового.

Световая температура ламп

Питание 12 В

Лампы, с напряжением 12 Вольт относятся к категории безопасного оборудования, не способного причинить серьёзного вреда человеку, поэтому их можно применять в помещениях с повышенной влажностью. А также в спальнях, детских, погребах и кухнях.

Такие лампы выпускают в основном в безцокольном штырьковом исполнении.

Усложняет процесс монтажа лампочек то, что требуется специальное устройство, блок питания, который будет понижать напряжение сети с 220 до 12 В. Кроме того, такое устройство в цепи берёт на себя часть энергии, а КПД падает. А любое дополнительное устройство – это потенциально слабое звено, которое может выйти из строя.

Питание 220 В

Светодиоды, рассчитанные на 220 В уже снабжены всем необходимым для стабилизации напряжения (сложностью внутренних деталей и технологии их производства, объясняется высокая цена ламп). Такие осветители – самые распространённые среди обычных потребителей электроэнергии.

Также существует деление по назначению светодиодов:

Последние, – маломощные источники света, пригодные только для подсветки дисплеев электроприборов и индикаторов в технике.

По способу сборки выделяются следующие типы:

  • DIP – состоит из кристалла и линзы над ним. Выводов у DIP-светодиода, два.
  • «Пиранья» – кристалл, линза, но выхода – четыре. Надёжнее монтируется, лучше отводит тепло.
  • SMD – поверхностный светодиод. Малые размеры, хороший теплоотвод, большое разнообразие вариантов исполнения. На сегодняшний день – это самые востребованные приборы.
  • СОВ – чип, встроенный в плату. Высокая интенсивность света. Контакты защищены от чрезмерного нагрева и окислительных процессов.

Как выбрать светодиодную лампу

Форма

Для декоративной люстры подойдёт свечевидная форма, или так называемая «кукуруза». Особенно если патроны направлены вверх.

В плафонах хорошо смотрятся шарообразные и грушевидные осветители.

Рефлекторы создают акцентное освещение.

Выбор цоколя

Список распространённых цоколей для светодиодных ламп:

  • E27 Самый привычный цоколь Эдисон диаметром 27 мм.
  • E14 Народное название «Миньон». Винтовой Эдисон 14 мм. Ставят на маломощные лампы.
  • E40 применяется для крупных мощных ламп (в основном для уличного освещения).

Штырьковые модели (безцокольные) G для галогеновых ламп, также скопированы и в светодиодных устройствах, чтобы заменить ими галогены.

  • G4 – для миниатюрных ламп.
  • GU5.3 – ими оснащены популярные лампы MR16 для мебели и потолков. Такие же, как галогеновые MR16.
  • GU10 – похожий на предыдущий, только с расстоянием между контактами в 10мм. Примечательная особенность – увеличенный диаметр на кончиках штырьков.
  • GX53 – светильники, встраиваемые и накладные для потолков и мебели, которые имеют плоскую широкую форму.
  • G13 – цоколь, аналогичный линейным люминесцентным лампам. Поворотный цоколь, применялся в аналогичных трубчатых лампах T8.

Времена, когда все пользовались лампами накаливания, давно прошли. Сегодня в продаже можно найти самые разные виды ламп освещения – люминесцентные, светодиодные, галогенные и другие.

Устройство люминесцентной лампы разберем в этой теме.

Пульсация

Чем меньше мерцание лампочки, тем лучше для глаз человека. Особенно этот показатель важен, когда речь идёт о выборе освещения для рабочего места. Существуют специальные измерительные приборы, показывающие уровень пульсации в цифровом обозначении. Но если прибора нет.

Определить мерцание можно двумя бытовыми методами:

  1. Поднести к лампочке карандаш и быстро подвигать им из стороны в сторону. Если глаз отчётливо видит несколько карандашей – лампочку можно ставить только в помещения общего назначения. Например, коридор, туалет или лестничную клетку. В стабильном, немерцающем потоке, будет видно карандаш в крайних точках и размытое изображение между ними.
  2. Навести на лампу камеру любого цифрового устройства. Хорошие лампочки светят ровно, а мерцающие дают тёмные полосы на экране. Глаза будут утомляться от такого освещения.

Радиатор

Как уже говорилось, хорошее отведение тепла – залог долгой работы лампочки.

Радиатор должен быть выполнен из алюминия.

Однако стремясь к неоправданной экономии, некоторые производители делают пластиковый радиатор и покрывают его серебристой краской.

Интенсивность свечения

Диммируемые лампы (светодиодные лампы работающие с диммером) можно регулировать по яркости, приглушая или добавляя света. О том, что лампочка способна на это, скажет пиктограмма в виде регулятора, на упаковке.

Заключение

Если Вы задаётесь вопросом: «Что я могу сделать для окружающей среды?», одним из ответов может быть переход на LED-оборудование! Будущее – за светодиодными лампами! Они бережно расходуют ресурсы, безопасны, просты в утилизации и экономически выгодны своему владельцу. К тому же заоблачные цены на них, будут снижаться с наращиванием объёмов производства. Уже сейчас стоимость LED приближается к обычной энергосберегающей.

Видео на тему

0 0 голоса
Рейтинг статьи
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии