Как разложить воду на водород

0

Как разложить воду на водород

Как сделать водородный генератор

Использование водорода в качестве энергоносителя для обогрева дома – идея весьма заманчивая, ведь его теплотворная способность (33.2 кВт / м3) превышает более чем в 3 раза показатель природного газа (9.3 кВт / м3). Теоретически, чтобы извлечь горючий газ из воды с последующим сжиганием его в котле, можно использовать водородный генератор для отопления. О том, что из этого может получиться и как сделать такое устройство своими руками, будет рассказано в данной статье.

Принцип работы генератора

Как энергоноситель водород действительно не имеет себе равных, а запасы его практически неисчерпаемы. Как мы уже сказали, при сжигании он выделяет огромное количество тепловой энергии, несравнимо большее, нежели любое углеводородное топливо. Вместо вредных соединений, выбрасываемых в атмосферу при использовании природного газа, при горении водорода образуется обычная вода в виде пара. Одна беда: данный химический элемент не встречается в природе в свободном виде, только в соединении с другими веществами.

Одно из таких соединений – обычная вода, представляющая собой полностью окисленный водород. Над ее расщеплением на составные элементы работали многие ученые в течение долгих лет. Нельзя сказать, что безрезультатно, ведь техническое решение по разделению воды все же было найдено. Его суть – в химической реакции электролиза, в результате которой происходит расщепление воды на кислород и водород, полученную смесь назвали гремучим газом или газом Брауна. Ниже показана схема водородного генератора (электролизера), работающего на электричестве:

Электролизеры производятся серийно и предназначены для газопламенных (сварочных) работ. Ток определенной силы и частоты подается на группы металлических пластин, погруженных в воду. В результате протекающей реакции электролиза выделяются кислород и водород вперемешку с водяным паром. Для его отделения газы пропускаются через сепаратор, после чего подаются на горелку. Дабы избежать обратного удара и взрыва, на подаче устанавливается клапан, пропускающий горючее только в одну сторону.

Для контроля за уровнем воды и своевременной подпитки конструкцией предусмотрен специальный датчик, по сигналу которого производится ее впрыск в рабочее пространство электролизера. За превышением давления внутри сосуда следит аварийный выключатель и сбросной клапан. Обслуживание водородного генератора заключается в периодическом добавлении воды, и на этом все.

Водородное отопление: миф или реальность?

Генератор для сварочных работ – это на данный момент единственное практическое применение электролитическому расщеплению воды. Использовать его для отопления дома нецелесообразно и вот почему. Затраты энергоносителей при газопламенных работах не так важны, главное, что сварщику не нужно таскать тяжеленные баллоны и возиться со шлангами. Другое дело – отопление жилища, где каждая копейка на счету. И тут водород проигрывает всем существующим ныне видам топлива.

Важно. Затраты электроэнергии на выделение горючего из воды методом электролиза будут гораздо выше, нежели гремучий газ сможет выделить при сжигании.

Серийные сварочные генераторы стоят немалых денег, поскольку в них используются катализаторы процесса электролиза, в состав которых входит платина. Можно сделать водородный генератор своими руками, но его эффективность будет еще ниже, чем у заводского. Получить горючий газ вам точно удастся, но вряд ли его хватит на обогрев хотя бы одной большой комнаты, не то что целого дома. А если и хватит, то придется оплачивать баснословные счета за электричество.

Чем тратить время и усилия на получение бесплатного топлива, которого не существует априори, проще смастерить своими руками простой электродный котел. Можете быть уверены, что так вы израсходуете гораздо меньше энергии с большей пользой. Впрочем, домашние мастера – энтузиасты всегда могут попробовать свои силы и собрать дома электролизер, с целью провести эксперименты и убедиться во всем самолично. Один из подобных экспериментов показан на видео:

Как изготовить генератор

Масса интернет-ресурсов публикуют самые разные схемы и чертежи генератора для получения водорода, но все они действуют по одному принципу. Мы предложим вашему вниманию чертеж простого устройства, взятый из научно-популярной литературы:

Здесь электролизер представляет собой группу металлических пластин, стянутых между собой болтами. Между ними установлены изоляционные прокладки, крайние толстые обкладки тоже изготовлены из диэлектрика. От штуцера, вмонтированного в одну из обкладок, идет трубка для подачи газа в сосуд с водой, а из него – во второй. Задача емкостей – отделять паровую составляющую и накапливать смесь водорода с кислородом, чтобы подавать его под давлением.

Совет. Электролитические пластины для генератора надо делать из нержавеющей стали, легированной титаном. Он послужит дополнительным катализатором реакции расщепления.

Пластины, что служат электродами, могут быть произвольного размера. Но надо понимать, что производительность аппарата зависит от их площади поверхности. Чем большее число электродов удастся задействовать в процессе, тем лучше. Но при этом и потребляемый ток будет выше, это следует учитывать. К концам пластин припаиваются провода, ведущие к источнику электричества. Здесь тоже есть поле для экспериментов: можно подавать на электролизер разное напряжение с помощью регулируемого блока питания.

В качестве электролизера можно применить пластиковый контейнер от водяного фильтра, поместив в него электроды из нержавеющих трубок. Изделие удобно тем, что его легко герметизировать от окружающей среды, выводя трубку и провода через отверстия в крышке. Другое дело, что этот самодельный водородный генератор обладает невысокой производительностью из-за малой площади электродов.

Заключение

На данный момент не существует надежной и эффективной технологии, позволяющей реализовать водородное отопление частного дома. Те генераторы, что имеются в продаже, могут успешно применяться для обработки металлов, но не для производства горючего для котла. Попытки организовать подобный обогрев приведут к перерасходу электроэнергии, не считая затрат на оборудование.

Водород при сотнях градусов – реальность или фантастика?

Высокотемпературный электролиз (также известен как электролиз водяного пара) – технология производства водорода и/или угарного газа из воды и/или углекислого газа с побочным продуктом в виде кислорода.

С экономической точки зрения высокотемпературный электролиз гораздо эффективнее, чем традиционный электролиз при комнатной температуре, так как некоторая часть энергии подается в виде тепла, более дешевого по сравнению с электричеством, а также потому, что реакция электролиза гораздо продуктивнее протекает при высоких температурах. Фактически при 2500C электрический ток не требуется, потому что вода распадается на водород и кислород путем термолиза . Подобные температуры являются практически нецелесообразными; предлагаемые ВТЭ работают в диапазоне 100-850C.

Увеличение КПД высокотемпературного электролиза лучше всего произойдет за счет оценки количества используемого электричества, поступающего из теплового двигателя, а затем – учета количества тепловой энергии, нужной для производства одного килограмма водорода (141,86 МДж), как во время самого процесса электролиза, так и во время производства электричества. При 100C требуется 350 МДж тепловой энергии (КПД – 41 %). При 850C требуется 225 МДж тепловой энергии (КПД – 64 %).

Читать еще:  Как приклеить лист пенопласта к потолку

Материалы

Крайне важен подбор материалов для электродов и электролита в твердом оксидном электролизном элементе . Один из вариантов – диоксид циркония, стабилизированный оксидом иттрия в качестве электролита, никель-керметовые электроды для водяного пара или водорода, и смесь оксидов лантана, стронция и кобальта для кислородных электродов.

Экономический потенциал

Даже с использованием этой технологии электролиз является откровенно невыгодным способом хранения энергии. Серьезные потери энергии при преобразовании происходят как во время процесса электролиза, так и во время преобразования полученного водорода обратно в энергию.

При текущих ценах на углеводороды ВТЭ не может конкурировать с пиролизом углеводородов , как экономическим источником водорода.

ВТЭ представляет собой интерес, как гораздо более эффективный способ производства водорода, при условии использования безуглеродного топлива и стандартных схем хранения энергии. Это может стать экономически выгодным, если дешевые альтернативные источники тепловой энергии (сконцентрированная солнечная, ядерная, геотермальная) можно будет использовать в связке с альтернативными источниками электроэнергии (солнечная, ветряная, водная, ядерная).

Возможными источниками дешевой высокотемпературной тепловой энергии будут исключительно нехимические виды, в том числе – ядерные реакторы, коллекторы, собирающие солнечное тепло, и геотермальные источники. В лабораторных условиях высокотемпературный электролиз показал затраты в 108 кДж для производства одного грамма водорода. В коммерческих условиях он себя не проявлял. К 2030 году ожидается постройка первых коммерческих реакторов четвертого поколения.

Рынок производства водорода

При обеспечении дешевыми источниками тепла высокой температуры возможны и другие способы производства водорода. В частности, стоит обратить внимание на термохимический серно-йодный цикл . Термохимическое производство может быть эффективнее, чем ВТЭ из-за отсутствия потребности в тепловом двигателе. Однако промышленное термохимическое производство потребует новых передовых материалов, которые смогут выдерживать высокие температуру, давление и коррозию.

Рынок для водорода – велик (50 миллионов метрических тонн/год в 2004 году, стоимость – около 135 миллиардов долларов/год) и растет примерно на 10 % в год. Этот рынок связан с пиролизом углеводородов для получения водорода, что приводит к выбросам углекислого газа. Два главных потребителя – нефтеперерабатывающие заводы и производители удобрений (каждый из них получит примерно половину всего производства). Автомобили на водороде должны распространиться повсеместно, их потребление вырастет, что поможет увеличить потребность в водороде при приходе водородной энергетики.

Электролиз и термодинамика

Во время электролиза объем электроэнергии, который необходимо добавить, равен сумме изменения энергии Гиббса в реакции и потерь системы. Теоретически потери могут быть сколь угодно близки к нулю, поэтому максимальный термодинамический КПД любого электрохимического процесса равен 100%. На практике КПД равен полученной работе электричества, разделенному на изменение энергии Гиббса во время реакции.

В большинстве случаев, как и при обычном электролизе воды, потребляемая мощность больше, чем изменение теплосодержания в реакции, поэтому некоторое количество энергии высвобождается в виде сбросного тепла. В случае электролиза водяного пара на водород и кислород при высокой температуре верно обратное. Тепло поглощается из окружающей среды, и удельная теплота сгорания производимого водорода выше потребляемой мощности. В этом случае отношение КПД к потребляемой мощности, можно сказать, превышает 100%. Максимально возможный в теории КПД топливного элемента противоположен КПД при электролизе. Из этого следует невозможность создания вечного двигателя путем сочетания этих двух процессов.

Эксперимент «MARS ISRU»

Высокотемпературный электролиз с твердыми оксидными электролизными элементами также предлагался для производства кислорода на Марсе из атмосферного углекислого газа с использованием циркониевых электролизных устройств .

Разрыв молекул воды и Закон сохранения энергии, какую использовать воду

В данной статье поговорим про разрыв молекул воды и Закон сохранения энергии. В конце статьи эксперимент для дома.

Нет никакого смысла изобретать установки и устройства по разложению молекул воды на водород и кислород не учитывая Закон сохранения энергии. Предполагается, что возможно создать такую установку, которая на разложение воды будет затрачивать меньшее количество энергии, чем та энергия, которая выделяется в процессе сгорания (соединения в молекулу воды). В идеале, структурно, схема разложения воды и соединение кислорода и водорода в молекулу будет иметь циклический (повторяющийся) вид.

Изначально, имеется химическое соединение – вода (H 2 O). Для её разложения на составляющие – водород (Н) и кислород (О) необходимо приложить определённое количество энергии. Практически, источником этой энергии может быть аккумуляторная батарея автомобиля. В результате разложения воды образуется газ, состоящий в основном из молекул водорода (Н) и кислорода (О). Одни, называют его «Газ Брауна», другие говорят, что выделяющийся газ, ничего не имеет общего с Газом Брауна. Думаю, нет необходимости рассуждать и доказывать, как называется этот газ, ведь это не важно, пускай этим занимаются философы.

Газ, вместо бензина поступает в цилиндры двигателя внутреннего сгорания, где посредством искры от свечей системы зажигания воспламеняется. Происходит химическое соединение водорода и кислорода в воду, сопровождаемое резким выделением энергии взрыва, заставляющего двигатель работать. Вода, образованная в процессе химического соединения, выпускается из цилиндров двигателя в виде пара через выпускной коллектор.

Важным моментом является возможность повторного использования воды для процесса разложения на составляющие – водород (Н) и кислород (О), образованной в результате сгорания в двигателе. Ещё раз посмотрим на «цикл» круговорота воды и энергии. На разрыв воды, которая находится в устойчивом химическом соединении, затрачивается определённое количество энергии. В результате сгорания, наоборот выделяется определённое количество энергии. Выделяемая энергия может быть грубо рассчитана на «молекулярном» уровне. Из-за особенностей оборудования, затрачиваемую на разрыв энергию рассчитать сложнее, её проще измерить. Если пренебречь качественными характеристиками оборудования, потерями энергии на нагрев, и другими немаловажными показателями, то в результате расчётов и измерений, если они проведены правильно, окажется, что затраченная и выделенная энергии равны друг другу. Это подтверждает Закон сохранения энергии, который утверждает, что энергия никуда не пропадает и не появляется «из пустоты», она лишь переходит в другое состояние. Но мы хотим использовать воду как источник дополнительной «полезной» энергии. Откуда эта энергия вообще может взяться? Энергия тратится не только на разложение воды, но и на потери, учитывающие КПД установки по разложению и КПД двигателя. А мы хотим получить «круговорот», в котором энергии больше выделяется, чем затрачивается.

Читать еще:  Как перенести стену в квартире своими руками

Я не привожу здесь конкретные цифры, учитывающие затраты и выработку энергии. Один из посетителей моего сайта прислал мне на Майл книгу Канарёва, за что я ему очень благодарен, в которой популярно разложены «подсчёты» энергии. Книга является очень полезной, и пара последующих статей моего сайта будет посвящена именно исследованиям Канарёва. Некоторые посетители моего сайта утверждают, что я своими статьями противоречу молекулярной физике, поэтому в своих последующих статьях я приведу на мой взгляд — основные результаты исследований молекулярщика — Канарёва, которые моей теории не противоречат, а даже наоборот подтверждают моё представление о возможности низкоамперного разложения воды.

Если считать, что вода, используемая для разложения – это самое устойчивое, конечное химическое соединение, и её химические и физические свойства такие же, как у воды, высвобождаемой в виде пара из коллектора двигателя внутреннего сгорания, то какими производительными установки по разложению не были, нет смысла пытаться получать дополнительную энергию из воды. Это противоречит Закону сохранения энергии. И тогда, все попытки использовать воду в качестве источника энергии — бесполезны, а все статьи и публикации на эту тему не более чем заблуждения людей, или просто — обман.

Любое химическое соединение при определённых условиях распадается или соединяется вновь. Условием для этого может служить физическая среда, в которой находится это соединение – температура, давление, освещённость, электрическое, или магнитное воздействие, либо наличие катализаторов, других химических веществ, или соединений. Воду можно назвать аномальным химическим соединением, обладающую свойствами, не присущими всем остальным химическим соединениям. К этим свойствам (в том числе) относятся реакции на изменения температуры, давления, электрического тока. В естественных Земных условиях, вода – устойчивое и «конечное» химическое соединение. В этих условиях имеется определённая температура, давление, отсутствует какое либо магнитное, или электрическое поле. Существует много попыток и вариантов изменить эти естественные условия для того, чтобы разложить воду. Из них, наиболее привлекательно выглядит разложение посредством воздействия электрического тока. Полярная связь атомов в молекулах воды настолько сильна, что можно пренебречь магнитным полем Земли, которое не оказывает никакого влияния на молекулы воды.

Небольшое отступление от темы:

Есть предположение определённых деятелей науки, что Пирамиды Хеопса не что иное, как огромные установки для концентрации энергии Земли, которую неизвестная нам цивилизация использовала для разложения воды. Узкие наклонные тоннели в Пирамиде, назначение которых до настоящего времени не раскрыто, могли использоваться для движения воды и газов. Вот такое «фантастическое» отступление.

Продолжим. Если воду поместить в поле мощного постоянного магнита, ничего не произойдёт, связь атомов будет по-прежнему сильнее этого поля. Электрическое поле, образованное мощным источником электрического тока, приложенное к воде посредством электродов, погруженных в воду, вызывает электролиз воды (разложение на водород и кислород). При этом, затраты энергии источника тока огромны — не сопоставимы с энергией, которую можно получить от обратного процесса соединения. Здесь и возникает задача минимизировать затраты энергии, но для этого необходимо понять как происходит процесс разрыва молекул и на чём можно «сэкономить».

Для того, чтобы верить в возможность использования воды, как источника энергии мы должны «оперировать» не только на уровне единичных молекул воды, а так же на уровне соединения большого числа молекул за счёт их взаимного притяжения и дипольного ориентирования. Мы должны учитывать межмолекулярные взаимодействия. Возникает резонный вопрос: Почему? А потому, что перед разрывом молекул необходимо их сначала сориентировать. Это, так же является ответом на вопрос «Почему в обычной электролизёрной установке используется постоянный электрический ток, а переменный – не работает?».

В соответствии с кластерной теорией, молекулы воды имеют положительные и отрицательные магнитные полюса. Вода в жидком состоянии имеет не плотную структуру, поэтому молекулы в ней, притягиваясь разноимёнными полюсами и отталкиваясь одноимёнными, взаимодействуют друг с другом, образуя кластеры. Если для воды, находящейся в жидком состоянии, представить оси координат и попытаться определить в каком направлении этих координат больше ориентированных молекул, у нас ничего не получится, потому что ориентация молекул воды без дополнительного внешнего воздействия — хаотична.

В твёрдом состоянии (состоянии льда) вода имеет структуру упорядоченных и точно ориентированных определённым образом друг относительно друга молекул. Сумма магнитных полей шести молекул H 2 O в состоянии льда в одной плоскости равна нулю, а связь с соседними «шестёрками» молекул в кристалле льда приводит к тому, что в целом, в определённом объёме (куске) льда отсутствует какая либо «общая» полярность.

Если лёд растает от повышения температуры, то многие связи молекул воды в «решётке» разрушатся и вода станет жидкой, но всё равно «разрушение» будет не полным. Большое количество связей молекул воды в «шестёрки» сохранится. Такая талая вода называется «структурированной», является полезной для всего живого, но для разложения на водород и кислород не подходит потому, что необходимо будет тратить дополнительную энергию на разрыв межмолекулярных связей, затрудняющих ориентацию молекул перед их «разрывом». Значительная потеря кластерных связей в талой воде произойдёт позже, естественным путём.

Если в воде имеются химические примеси (соли, или кислоты), то эти примеси препятствуют соединению соседних молекул воды в кластерную решётку, отнимая у структуры воды водородные и кислородные связи, чем при низких температурах нарушают «твёрдую» структуру льда. Всем известно, что растворы кислотных и щелочных электролитов не замерзают при отрицательных температурах так же, как и солёная вода. Благодаря наличию примесей, молекулы воды становятся легко ориентируемыми под действием внешнего электрического поля. Это с одной стороны хорошо, не надо тратить лишнюю энергию на полярную ориентацию, но с другой стороны это плохо, потому, что эти растворы хорошо проводят электрический ток и в результате этого, в соответствии с Законом Ома, амплитуда тока необходимая на разрыв молекул оказывается значительной. Низкое межэлектродное напряжение приводит к низкой температуре электролиза, поэтому такая вода используется в электролизёрных установках, но для «лёгкого» разложения такая вода не годится.

Какая же вода должна применяться? Вода должна иметь минимальное количество межмолекулярных связей – для «лёгкости» полярной ориентации молекул, не должна иметь химических примесей, увеличивающих её проводимость – для уменьшения тока, используемого для разрыва молекул. Практически, такой воде соответствует дистиллированная вода.

Вы можете провести простой эксперимент сами

Налейте свеже-дистиллированную воду в пластиковую бутылку. Поместите бутылку в морозильную камеру. Выдержите бутылку около двух-трёх часов. Когда Вы достанете бутылку из морозильной камеры (трясти бутылкой нельзя), Вы увидите, что вода находится в жидком состоянии. Откройте бутылку и тонкой струйкой выливайте воду на наклонную поверхность из нетеплопроводного материала (например — широкую деревянную доску). На Ваших глазах вода будет превращаться в лёд. Если в бутылке осталась вода, закройте крышку, резким движением ударьте дном бутылки о стол. Вода в бутылке резко превратится в лёд.

Читать еще:  Как получить серый цвет краски для стен

Эксперимент может не получиться, если дистилляция воды была произведена более пяти суток назад, некачественно, или подвергалась тряске, в результате чего, в ней появились кластерные (межмолекулярные) связи. Время выдержки в морозильной камере, зависит от самой морозильной камеры, что так же может повлиять на «чистоту» эксперимента.

Этот эксперимент подтверждает, что минимальное количество межмолекулярных связей именно в дистиллированной воде.

Ещё один важный аргумент в пользу дистиллированной воды: Если Вы видели, как работает электролизёрная установка, то знаете, что использование водопроводной (даже очищенной через фильтр) воды загрязняет электролизёр так, что без регулярной его чистки снижается эффективность электролиза, а частая чистка сложного оборудования – лишние трудозатраты, да и оборудование из-за частых сборок – разборок придёт в негодное состояние. Поэтому даже и не думайте использовать для разложения на водород и кислород водопроводную воду. Стэнли Мэйер использовал водопроводную воду только для демонстрации, чтобы показать какая «крутая» у него установка.

Чтобы понять то, к чему нам необходимо стремиться, мы должны понять физику процессов, происходящих с молекулами воды во время воздействия электрического тока. В следующей статье мы вкратце, без «заумной нагрузки на мозг» ознакомимся с теорией профессора Канарёва о строении молекул воды, кислорода и водорода.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Ученые расщепили воду на водород и кислород, используя обычную батарейку

Ученые из Стэнфордского университета разработали необычное устройство, которое использует обычную 1,5-вольтовую батарейку, для расщепления воды на водород и кислород при комнатной температуре. Их разработка может являться дешевым и удобным способом для производства горючего для водородных автомобилей.

Расщепитель воды производится из относительно дешевых металлов, никеля и железа, через которые пропускается ток от обычной батарейки типа ААА, сообщает ресурс Gizmag.

«Нам впервые удалось расщепить воду при низком напряжении, используя недорогие металлы. Это очень важно, ведь ранее для подобных целей использовались дорогие металлы, такие как платина или иридий», — говорит ведущий исследователь Hongjie Dai.

Технология имеет огромный потенциал в качестве источника питания для водородных двигателей, которые уже давно пророчат на смену бензиновым. В отличие от бензиновых двигателей, которые производят много вредных выбросов в атмосферу, в качестве побочного продукта у водородных агрегатов является вода.

Ранее водородные двигатели критиковали за их высокую стоимость, отсутствие развитой инфраструктуры и низкую энергоэффективность. Однако, по мнению исследователей из Стэнфордского университета, их изобретение может значительно исправить большинство этих недостатков.

«На протяжении многих лет ученые пытались сделать недорогие электрокатализаторы с высокой эффективностью и длительным сроком службы. Когда мы обнаружили, что никель является столь же эффективным, как и платина, это стало для нас неожиданностью», — объясняет Hongjie Dai.

Катализатор из никеля и оксида никеля требует для расщепления воды значительно меньшее напряжение, по сравнению с чистым никелем или чистым оксидом никеля. Однако, как сообщают создатели, данная технология еще довольно «сырая» и не совсем готова для коммерческого использования.

В будущем ученые планируют разработать катализатор, работающий от солнечной энергии вместо батарейки. Ведь исследователи полагают, что их изобретение может существенно повлиять на производство водородных автомобилей. Кстати, напомним, что компания Toyota, планирует в следующем году представить автомобиль с двигателем, работающем на водороде.

Как разложить воду на водород

Также произошло бы увеличение объема газа, произведенного при электролизе за счет того что молекулы были бы атомарными.
С одного литра воды выходит 1866,6 литров Газа Брауна. При нормальном двухатомном состоянии H2:O2 выходит 933,3 литра. Если предположить, что нам удалось добыть достаточное количество атомарной смеси H и O для сжигания в газовой горелке, то температура пламени была бы существенно выше чем при обычном сжигании водорода. Таким образом мы бы получили «горячее» пламя, потому что не расходовалась бы энергия на раскол H2 и O2.
Если бы H и O непосредственно участвовали в синтезе воды, то у нас были бы (для четырех молей H и двух молей O) 442,4 килокалории доступной энергии, вместо 115,7 килокалорий доступными при 2H2:O2.
Эта дополнительная энергия может объяснить некоторые странные эффекты Газа Брауна, такие как плавление вольфрама, образование чистых как будто проделанных лазером отверстий в дереве, металле и керамике. Температура моно-атомного Газа Брауна выше в 3.8 раза традиционной смеси H2 и O2.

Способы получения ННО или топливного газа из воды.
Разложение молекулы воды можно производить различными способами,
1) Электролизом (пропусканием постоянного тока большой величины (А) или пропусканием постоянного высокого напряжения (В) через воду или электролит на основе воды.
Первый способ и есть основной, который в 99% используется, и при использовании ШИМов с импульсным управлением за процессом ошибочно принимают за Мейера, и т.д.
2) Воздействием высоких температур с катализатором и без него
Этот способ тоже более или менее распространен, их мы называем еще как GEET технологии
* Эти два способа эксплуатируются по полной, в независимости есть у них оппоненты или почитатели.
Остальные мне известные способы:
3) Воздействием электро дуги в воде.
4) Воздействием силового поля Как от коронного разряда, так от силового поля больших напряжений.
5) Воздействием на воду силой колебаний определенной частоты (УЗ и т.д.)
6) Мейеровский способ “перезалядки” ячейки-конденсатора на основе воды.
7) Холодный ядерный синтез Болотова, Филимоненко и т.д.
остаются пока не вылизанными и не практикующими в полном объеме, по причине не распространенности знаний и практик по этим процессам.
А традиционный электролиз это без проигрышный вариант, доступный широкому слою потребителей, устройства для которого доступны в личном изготовлении.

0 0 голоса
Рейтинг статьи
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии