146 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как построить температурный график

Содержание

Температурный график отопления

Компьютеры уже давно и успешно работают не только на столах офисных работников, но и в системах управления производственными и технологическими процессами. Автоматика успешно управляет параметрами систем теплоснабжения зданий, обеспечивая внутри них.

. заданную необходимую температуру воздуха (иногда для экономии меняющуюся в течение суток).

Но автоматику необходимо грамотно настроить, дать ей исходные данные и алгоритмы для работы! В этой статье рассматривается оптимальный температурный график отопления – зависимость температуры теплоносителя водяной системы отопления при различных температурах наружного воздуха.

Эта тема уже рассматривалась в статье о водяном отоплении. Здесь мы не будем рассчитывать теплопотери объекта, а рассмотрим ситуацию, когда эти теплопотери известны из предшествующих расчетов или из данных фактической эксплуатации действующего объекта. Если объект действующий, то лучше взять значение теплопотерь при расчетной температуре наружного воздуха из статистических фактических данных предыдущих лет эксплуатации.

В упомянутой выше статье для построения зависимостей температуры теплоносителя от температуры наружного воздуха решается численным методом система нелинейных уравнений. В этой статье будут представлены «прямые» формулы для вычисления температур воды на «подаче» и на «обратке», представляющие собой аналитическое решение задачи.

Предложенный далее расчет в Excel можно выполнить также в программе OOo Calc из пакета Open Office.

О цветах ячеек листа Excel, которые применены для форматирования в статьях, можно прочесть на странице « О блоге ».

Расчет в Excel температурного графика отопления.

Итак, при настройке работы котла и/или теплового узла от температуры наружного воздуха системе автоматики необходимо задать температурный график.

Возможно, правильнее датчик температуры воздуха разместить внутри здания и настроить работу системы управления температурой теплоносителя от температуры внутреннего воздуха. Но часто бывает сложно выбрать место установки датчика внутри из-за разных температур в различных помещениях объекта или из-за значительной удаленности этого места от теплового узла.

Рассмотрим пример. Допустим, у нас имеется объект – здание или группа зданий, получающие тепловую энергию от одного общего закрытого источника теплоснабжения – котельной и/или теплового узла. Закрытый источник – это источник, из которого запрещен отбор горячей воды на водоснабжение. В нашем примере будем считать, что кроме прямого отбора горячей воды отсутствует и отбор тепла на нагрев воды для горячего водоснабжения.

Для сравнения и проверки правильности расчетов возьмем исходные данные из вышеупомянутой статьи «Расчет водяного отопления за 5 минут!» и составим в Excel небольшую программу расчета температурного графика отопления.

Исходные данные:

1. Расчетные (или фактические) теплопотери объекта (здания) Qр в Гкал/час при расчетной температуре наружного воздуха tнр записываем

в ячейку D3: 0,004790

2. Расчетную температуру воздуха внутри объекта (здания) tвр в °C вводим

3. Расчетную температуру наружного воздуха t нр в °C заносим

4. Расчетную температуру воды на «подаче» tпр в °C вписываем

5. Расчетную температуру воды на «обратке» tор в °C вводим

6. Показатель нелинейности теплоотдачи примененных приборов отопления n записываем

в ячейку D8: 0,30

7. Текущую (интересующую нас) температуру наружного воздуха tн в °C заносим

Значения в ячейках D3 – D8 для конкретного объекта записываются один раз и далее не меняются. Значение в ячейке D8 можно (и нужно) изменять, определяя параметры теплоносителя для различной погоды.

Результаты расчетов:

8. Расчетный расход воды в системе Gр в т/час вычисляем

в ячейке D11: =D3*1000/(D6-D7) =0,239

9. Относительный тепловой поток q определяем

в ячейке D12: =(D4-D9)/(D4-D5) =0,53

10. Температуру воды на «подаче» tп в °C рассчитываем

в ячейке D13: =D4+0,5*(D6-D7)*D12+0,5*(D6+D7-2*D4)*D12^(1/(1+D8)) =61,9

11. Температуру воды на «обратке » tо в °C вычисляем

в ячейке D14: =D4-0,5*(D6-D7)*D12+0,5*(D6+D7-2*D4)*D12^(1/(1+D8)) =51,4

Расчет в Excel температуры воды на «подаче» tп и на «обратке» tо для выбранной температуры наружного воздуха tн выполнен.

Сделаем аналогичный расчет для нескольких различных наружных температур и построим температурный график отопления. (О том, как строить графики в Excel можно прочитать здесь.)

Произведем сверку полученных значений температурного графика отопления с результатами, полученными в статье «Расчет водяного отопления за 5 минут!» — значения совпадают!

Итоги.

Практическая ценность представленного расчета температурного графика отопления заключается в том, что он учитывает тип установленных приборов и направление движения теплоносителя в этих приборах. Коэффициент нелинейности теплоотдачи n , оказывающий заметное влияние на температурный график отопления у разных приборов различный:

у чугунных радиаторов n =0,15…0,30 (зависит от способа подключения);

у конвекторов n =0,30…0,35 (зависит от марки прибора).

Для любых приборов отопления коэффициент нелинейности теплоотдачи n можно найти в технической документации заводов-изготовителей.

По величине относительного теплового потока q можно понять, что, например, при температуре наружного воздуха tн =-8 °С в нашем примере котел или система должны работать на 50% номинальной мощности для поддержания в помещении температуры внутреннего воздуха tвр =+20 °С.

Используя температурный график отопления, можно быстро выполнить экспресс-аудит системы и понять есть недогрев «подачи» или перегрев «обратки», а так же оценить величину расхода теплоносителя.

Конечно, теплопотери здания зависят от переменных в течение суток и месяцев силы ветра, влажности воздуха, инсоляции, однако главнейшим влияющим фактором все-таки на 90…95% является температура наружного воздуха.

Ссылка на скачивание файла: temperaturnyy-grafik-otopleniya (xls 26,0KB).

Построение температурного графика тепловых сетей

Построение температурного графика тепловых сетей для тепловой схемы водогрейной котельной с точкой излома выполняется в следующем порядке:

1. Система координат выполняется в осях «температура наружного воздуха» — «температура сетевой воды»

2. На оси «температура наружного воздуха – tн» откладываются температуры наружного воздуха для расчетных режимов;

3. На оси «температура сетевой воды – tс» откладываются температуры сетевой воды для температуры наружного воздуха, расчетной на отопление (средняя температура наиболее холодной пятидневки. На рисунке – это 150˚С в подающей магистрали и 70˚С в обратной магистрали тепловых сетей.

4. График изменения температуры воды в тепловых сетях в зависимости от температуры наружного воздуха строятся путем соединения точек, характеризующих температуру воды в магистралях при температуре наружного воздуха, расчетной на отопление с точкой с координатами (tн=+8˚С; tс=30˚С).

Читать еще:  Как построить очаг для казана

5. Из точки 70˚С на оси ординат проводим прямую линию, параллельную оси абсцисс, право до пересечения с графиком температур в подающей магистрали. Координаты этой точки соответствуют точке излома температурного графика.

6. При температуре точки излома температурного графика определяем температуру сетевой воды в обратном трубопроводе.

Пример построения температурного графика тепловых сетей 150-70˚С

Расчет тепловой схемы водогрейной котельной без точки излома ведется для тех же режимов, исключая излом графика. В схеме с точкой излома при повышении наружной температуры от tизл до +8˚С возникает значительный «перетоп» в системах отопления и вентиляции потребителей. Поэтому, в целях экономии в настоящее время широко используется схема водогрейной котельной без точки излома.

Приложение 2

Расчет тепловой схемы отопительной котельной.

Принципиальная тепловая схема отопительной теплогенерирующей установки для закрытой системы теплоснабжения

1 – водогрейный котельный агрегат, 2 – насос сетевой, 3 – насос рециркуляционный, 4 – насос исходной воды, 5 — насос подпиточный, 6- деаэратор вакуумного типа, 7 – ХВО, 8, 9 – теплообменники, 10 — охладитель выпара, 11 – бак рабочей воды (бак-газоотделитель), 12 – насос подачи воды к эжектору, 13 – водоструйный эжектор, 14 – клапан погодного регулирования.

Табл. 3.1 Расчет тепловой схемы отопительной теплогенерирующей установки для закрытой системы теплоснабжения

Температурный график тепловой сети – советы при составлении

Что такое температурный график

Температурный график представляет собой зависимость степени нагрева воды в системе от температуры холодного наружного воздуха. После необходимых вычислений результат представляют в виде двух чисел. Первое означает температуру воды на входе в систему теплоснабжения, а вторая на выходе.

Например, запись 90-70ᵒС означает, что при заданных климатических условиях для отопления определенного здания понадобится, чтобы на входе в трубы теплоноситель имел температуру 90ᵒС, а на выходе 70ᵒС.

Все значения представляются для температуры воздуха снаружи по наиболее холодной пятидневке. Данная расчетная температура принимается по СП «Тепловая защита зданий». Внутренняя температура для жилых помещений по нормам принимается 20ᵒС. График обеспечит правильную подачу теплоносителя в трубы отопления. Это позволит избежать переохлаждения помещений и нерационального расхода ресурсов.

Необходимость выполнения построений и расчетов

Температурный график необходимо разрабатывать для каждого населенного пункта. Он позволяет обеспечиться наиболее грамотную работу системы отопления, а именно:

  1. Привести в соответствие тепловые потери во время подачи горячей воды в дома со среднесуточной температурой наружного воздуха.
  2. Предотвратить недостаточный нагрев помещений.
  3. Обязать тепловые станции поставлять потребителям услуги, соответствующие технологическим условиям.

Такие вычисления необходимы, как для крупных отопительных станций, так и для котельных в небольших населенных пунктах. В этом случае результат расчетов и построений будет называться график котельной.

Способы регулирования температуры в системе отопления

По завершении расчетов необходимо добиться вычисленной степени нагрева теплоносителя. Достигнуть ее можно несколькими способами:

В первом случае изменяют расход воды, поступающей в отопительную сеть, во втором регулируют степень нагрева теплоносителя. Временный вариант предполагает дискретную подачу горячей жидкости в тепловую сеть.

Виды графиков

В зависимости от назначения тепловой сети способы выполнения отличаются. Первый вариант — нормальный график отопления. Он представляет собой построения для сетей, работающих только на отопление помещений и регулируемых централизованно.

Повышенный график рассчитывается для тепловых сетей, обеспечивающих отопление и снабжение горячей водой. Он строится для закрытых систем и показывает суммарную нагрузку на систему подачи горячей воды.

Скорректированный график также предназначен для сетей, работающих и на отопление, и на нагрев. Здесь учитываются тепловые потери при прохождении теплоносителя по трубам до потребителя.

Составление температурного графика

Построенная прямая линия зависит от следующих значений:

  • нормируемая температура воздуха в помещении;
  • температура наружного воздуха;
  • степень нагрева теплоносителя при поступлении в систему отопления;
  • степень нагрева теплоносителя на выходе из сетей здания;
  • степень теплоотдачи отопительных приборов;
  • теплопроводность наружных стен и общие тепловые потери здания.

Чтобы выполнить грамотный расчет, необходимо вычислить разницу между температурами воды в прямой и обратной трубе Δt. Чем выше значение в прямой трубе, тем лучше теплоотдача системы отопления и выше температура внутри помещений.

Чтобы рационально и экономно расходовать теплоноситель, необходимо добиться минимально возможного значения Δt. Это можно обеспечить, например, проведением работ по дополнительному утеплению наружных конструкций дома (стен, покрытий, перекрытий над холодным подвалом или техническим подпольем).

Расчет режима отопления

В первую очередь необходимо получить все исходные данные. Нормативные значения температур наружного и внутреннего воздуха принимаются по СП «Тепловая защита зданий». Для нахождения мощности отопительных приборов и тепловых потерь потребуется воспользоваться следующими формулами.

Тепловые потери здания

Исходными данными в этом случае станут:

  • толщина наружных стен;
  • теплопроводность материала, из которого изготовлены ограждающие конструкции (в большинстве случаев указывается производителем, обозначается буквой λ);
  • площадь поверхности наружной стены;
  • климатический район строительства.

В первую очередь находят фактическое сопротивление стены теплопередаче. В упрощенном варианте можно его найти как частное толщины стены и ее теплопроводности. Если наружная конструкция состоит из нескольких слоев, по отдельности находят сопротивление каждого из них и складывают полученные значения.

Тепловые потери стен рассчитываются по формуле:

Здесь Q – это тепловые потери в килокалориях, а F – площадь поверхности наружных стен. Для более точного значения необходимо учесть площадь остекления и его коэффициент теплопередачи.

Расчет поверхностной мощности батарей

Удельная (поверхностная) мощность вычисляется как частное максимальной мощности прибора в Вт и площади поверхности теплоотдачи. Формула выглядит следующим образом:

Расчет температуры теплоносителя

На основе полученных значений подбирается температурный режим отопления и строится прямая теплоотдачи. По одной оси наносятся значения степени нагрева подаваемой в систему отопления воды, а по другой температура наружного воздуха. Все величины принимаются в градусах Цельсия. Результаты расчета сводятся в таблицу, в которой указаны узловые точки трубопровода.

  1. Для крупных поставщиков тепловой энергии используют параметры теплоносителя 150-70ᵒС, 130-70ᵒС, 115-70ᵒС.
  2. Для небольших систем на несколько многоквартирных домов применяются параметры 90-70ᵒС (до 10 этажей), 105-70ᵒС (свыше 10 этажей). Может также быть принят график 80-60ᵒС.
  3. При обустройстве автономной системы отопления для индивидуального дома достаточно контроля над степенью нагрева с помощью датчиков, график можно не строить.

Выполненные мероприятия позволяют определять параметры теплоносителя в системе в определенный момент времени. Анализируя совпадение параметров с графиком можно проверять эффективность отопительной системы. В таблице температурного графика указывается также степень нагрузки на систему отопления.

Какой температурный график системы отопления и от чего он зависит

Существуют определенные закономерности, по которым меняется температура теплоносителя в центральном отоплении. Для того, чтобы адекватно прослеживать эти колебания, существуют специальные графики.

Причины температурных изменений

Для начала важно понять несколько моментов:

  1. Когда изменяются погодные условия, это автоматически влечет за собой изменение теплопотерь. При наступлении холодов для поддержания в жилище оптимального микроклимата тратится на порядок больше тепловой энергии, чем в теплый период. При этом уровень расходуемого тепла рассчитывается не точной температурой уличного воздуха: для этого используется т.н. «дельта» разницы между улицей и внутренними помещениями. К примеру, +25 градусов в квартире и -20 за ее стенами повлекут за собой точно такие же затраты тепла, как при +18 и -27 соответственно.
  2. Постоянство теплового потока от батарей отопления обеспечивается стабильной температурой теплоносителя. При снижении температуры в помещении будет наблюдаться некоторый подъем температуры радиаторов: этому способствует увеличение дельты между теплоносителем и воздухом в помещении. В любом случае, это не сможет адекватно компенсировать возрастание тепловых потерь посредством через стены. Объясняется это установкой ограничений для нижней границы температуры в жилище действующим СНиПом на уровне +18-22 градусов.
Читать еще:  Как построить зимовник для пчел

Логичнее всего решить возникшую проблему увеличения потерь повышением температуры теплоносителя. Важно, чтобы ее возрастание происходило параллельно снижению температуры воздуха за окном: чем там холоднее, тем большие потери тепла нуждаются в восполнении. Для облегчения ориентации в этом вопросе на каком-то этапе было решено создать специальные таблицы согласования обоих значений. Исходя из этого, можно сказать, что под температурным графиком системы отопления подразумевается выведение зависимости уровня нагрева воды в подающем и обратном трубопроводе по отношению к температурному режиму на улице.

Особенности температурного графика

Вышеупомянутые графики встречаются в двух разновидностях:

  1. Для сетей теплоподачи.
  2. Для системы отопления внутри дома.

Для понимания того, чем отличаются оба этих понятия, желательно для начала разобраться в особенностях работы централизованного отопления.

Связка между ТЭЦ и тепловыми сетями

Назначением этой комбинации является сообщение теплоносителю должного уровня нагрева, с последующей транспортировкой его к месту потребления. Теплотрассы обычно имеют длину в несколько десятков километров, при общей площади поверхности в десятки тысяч квадратных метров. Хотя магистральные сети и подвергаются тщательной теплоизоляции, без теплопотерь обойтись невозможно.

По ходу движения между ТЭЦ (или котельной) и жилыми помещениями наблюдается некоторое остывание технической воды. Сам по себе напрашивается вывод: чтобы донести до потребителя приемлемый уровень нагрева теплоносителя, его необходимо подавать внутрь теплотрассы из ТЭЦ в максимально нагретом состоянии. Повешение температуры ограничено точкой кипения. Ее можно сместить в сторону повышения температуры, если увеличивать давление в трубах.

Стандартный показатель давления в подающей трубы теплотрассы находится в пределах 7-8 атм. Данный уровень, несмотря на потери напора по ходу транспортировки теплоносителя, дает возможность обеспечить эффективную работу отопительной системы в зданиях высотой до 16 этажей. При этом дополнительные насосы обычно не нужны.

Очень важно то, что такое давление не создает опасности для системы в целом: трассы, стояки, подводки, смесительные шланги и другие узлы сохраняют свою работоспособность длительное время. Учитывая определенный запас для верхнего предела температуры подачи, его значение берется, как +150 градусов. Пролегание самых стандартных температурных графиков подачи теплоносителя в систему отопления проходит в промежутке между 150/70 — 105/70 (температуры подающей и обратной трассы).

Особенности подачи теплоносителя в систему отопления

Домовая система отопления характеризуется наличием ряда дополнительных ограничений:

  • Значение наибольшего нагрева теплоносителя в контуре ограничено показателем +95 градусов для двухтрубной системы и +105 для однотрубной системы отопления. Следует заметить, что дошкольные воспитательные учреждения характеризуются наличием более строгих ограничений: там температура батарей не должна подниматься выше +37 градусов. Чтобы компенсировать такое уменьшение температуры подачи, приходится наращивать число радиаторных секций. Внутренние помещения детских садов, расположенных в регионах с особо суровыми климатическими условиями, буквально напичканы батареями.
  • Желательно добиться минимальной температурной дельты графика подачи отопления между подающим и обратным трубопроводами: в противном случае степень нагрева радиаторных секций в здании будет иметь большую разницу. Для этого теплоноситель внутри системы должен двигаться максимально быстро. Однако тут есть своя опасность: из-за высокой скорости циркуляции воды внутри отопительного контура ее температура на выходе обратно в трассу будет излишне высокой. В итоге это может привести к серьезным нарушениям в работе ТЭЦ.

Для преодоления возникшей проблемы каждый дом оснащается одним или несколькими элеваторными модулями. Благодаря им поток воды из подающего трубопровода разбавляется порцией из обратки. Используя эту смесь, можно добиться быстрой циркуляции значительных объемов теплоносителя, не подвергая при этом опасности излишнего нагрева обратный трубопровод магистрали. Система отопления внутри жилищ задается отдельным температурным графиком отопления, где учитывается наличие элеватора. Двухтрубные контуры обслуживаются отопительным температурным графиком 95-70, однотрубные — 105-70 (такие схемы почти не встречаются в многоэтажных зданиях). Читайте также: «Какая температура должна быть в батареях центрального отопления – нормы и стандарты».

Влияние климатических зон на температуру наружного воздуха

Главным фактором, напрямую влияющим на составление температурного графика на отопительный сезон, выступает расчетная зимняя температура. По ходу составления стараются добиться того, чтобы наибольшие значения (95/70 и 105/70) при максимальных морозах гарантировали нужную СНиП температуру. Температура наружного воздуха для расчета отопления берется из специальной таблицы климатических зон.

Особенности регулировки

Параметры тепловых трасс находятся в зоне ответственности руководства ТЭЦ и теплосетей. В то же время за параметры сети внутри здания отвечают работники ЖЭКа. В основном жалобы жильцов на холод касаются отклонений в нижнюю сторону. Намного реже встречаются ситуации, когда замеры внутри тепловиков свидетельствуют о повышенной температуре обратки.

Существует несколько способов нормализации параметров системы, которые можно реализовать самостоятельно:

  • Рассверливание сопла. Решить проблему занижения температуры жидкости в обратке можно путем расширения элеваторного сопла. Для этого нужно закрыть все задвижки и вентили на элеваторе. После этого модуль снимают, вытаскивают его сопло и рассверливают на 0,5-1 мм. После сборки элеватора его запускают для стравливания воздуха в обратном порядке. Паронитовые уплотнители на фланцах рекомендуется заменить резиновыми: их изготовляют по размеру фланца из автомобильной камеры.
  • Глушение подсоса. В экстремальных случаях (при наступлении сверхнизких морозов) сопло можно вообще демонтировать. В таком случае возникает угроза того, что подсос начнет выполнять функцию перемычки: чтобы это не допустить, его глушат. Для этого используется стальной блин толщиной от 1 мм. Данный способ является экстренным, т.к. это может спровоцировать скачок температуры батарей до +130 градусов.
  • Управление перепадом. Временным способом решения проблемы повышения температуры является корректировка перепада элеваторной задвижкой. Для этого необходимо перенаправить ГВС на подающую трубу: обратка при этом оснащается манометром. Входную задвижку обратного трубопровода полностью закрывают. Далее нужно понемногу открывать вентиль, постоянно сверяя свои действия с показаниями манометра.

Просто закрытая задвижка может спровоцировать остановку и разморозку контура. Снижение разницы достигается благодаря росту давления на обратке (0,2 атм./сутки). Температуру в системе необходимо проверять каждый день: она должна соответствовать отопительному температурному графику.

О температурных графиках

А.И. Миргородский, ведущий инженер, ООО «Ивтеплоналадка», г. Иваново (приводится в сокращении. С полной версией статьи можно ознакомиться на сайте РосТепло.ру).

В статье обобщается информация из учебников и справочников по теплоснабжению и приводятся основополагающие данные для расчётов графиков регулирования отпуска и потребления тепла.

Обобщая опыт работы теплоснабжающих организаций (ТСО) в более чем 50 крупных городах России, можно сделать вывод, что в среднестатистической ТСО технические специалисты и их руководители не знают, как рассчитывается температурный график, почему он именно такой и на что и как влияет его изменение. Технические руководители некоторых ТСО своим решением изменяют температурные графики совершенно произвольным образом: изменяют угол наклона, выгибают дугой, вводят ступени на линии температур воды в подающем трубопроводе, поднимают линию температур воды в обратном трубопроводе приближая её к фактическим температурам.

Читать еще:  Как построить лестницу в подвал

Температурный график – это не эмпирическая зависимость температуры сетевой воды от температуры наружного воздуха. Температурные графики рассчитываются по формулам. В их основе лежат уравнения теплопередачи. Но обо всем по порядку, с начала нужно разобраться со способами регулирования тепловой нагрузки.

Способы регулирования тепловой нагрузки

Существует три основных способа регулирования тепловой нагрузки:

ü качественный – изменением температуры сетевой воды при постоянном её расходе;

ü количественный – изменением расхода сетевой воды при постоянной её температуре;

ü качественно-количественное – одновременное изменение температуры и расхода сетевой воды.

Для большинства источников тепловой энергии (а для некоторых и единственным) основным видом тепловой нагрузки является отопление. Доля других видов тепловой нагрузки, ГВС (средняя) и вентиляции в период отопительного сезона существенно ниже отопительной и, как правило, не превышает 30%. Поэтому, в основу центрального регулирования закладывается закон изменения отопительной нагрузки от температуры наружного воздуха – график качественного регулирования тепловой нагрузки по отоплению.

При наличии нагрузки ГВС в температурный график вводят ограничение минимального значения температуры воды в подающем трубопроводе для обеспечения необходимой температуры воды систем ГВС. Это ограничение называется «спрямление на ГВС». При включении подогревателей ГВС по последовательной схеме применяется график качественного регулирования по совмещённой нагрузке отопления и ГВС. В этом случае к значениям температур воды в подающем трубопроводе вводится надбавка, которая рассчитывается, исходя из соотношения нагрузки ГВС и отопления. Но такие системы теплоснабжения встречаются не часто.

Случаев применения количественного или качественно-количественного регулирования для теплоснабжения городов автору не известно.

Расчёт температурного графика качественного регулирования

Формулы расчёта температурного графика выводятся из совместного решения трёх уравнений теплопередачи.

Первое уравнение. Тепловой поток на компенсацию тепловых потерь зданием (теплопотери через ограждающие конструкции здания)

где tвн – температура воздуха в отапливаемом здании, °С; tн температура наружного воздуха, °С; ∑(ki ∙ Fi)зд сумма произведений коэффициентов теплопередачи отдельных ограждающих конструкций здания на их поверхности.

В безразмерном виде первое уравнение можно представить, как:

(2)

, (3)

где – относительная разность температур внутреннего и наружного воздуха.

Надстрочные индексы «р» здесь и далее обозначают значение при расчётной температуре наружного воздуха.

Второе уравнение. Тепловой поток, выделяемый нагревательными приборами

, (4)

где t3 – температура теплоносителя на входе в отопительный прибор, °С; t2 – то же на выходе, °С; ∑(ki ∙ Fi)пр – сумма произведений коэффициентов теплопередачи отдельных нагревательных приборов на их поверхности.

Коэффициент теплопередачи нагревательного прибора не является постоянной величиной и зависит от температурного напора отопительного прибора ∆t:

, (5)

, (6)

где А – постоянная, зависящая от типа прибора, места, способа установки и ряда других факторов; n – постоянная, также зависящая от типа нагревательного прибора. Для систем отопления, оборудованных наиболее распространёнными типами конвективно-излучающих нагревательных приборов, n = 0,25;

Комплекс ∑(ki ∙ Fi)пр также можно выразить через расчётные значения тепловой нагрузки и температурного напора:

, (7)

где ∆t р температурный напор отопительного прибора при расчётном режиме (при расчётной температуре наружного воздуха):

. (8)

В безразмерном виде второе уравнение теплового потока будет выглядеть следующим образом:

(9)

. (10)

Третье уравнение. Тепловой поток, сообщаемый теплоносителем нагревательным приборам:

где с теплоёмкость теплоносителя, Вт/(м 3 ·°С); G расход теплоносителя, м 3 ;
u – коэффициент смешения на тепловом узле; t1 – температура теплоносителя до узла смешения, °С.

Коэффициент смешения рассчитывается по формуле:

. (13)

Расход теплоносителя G можно также выразить через расчетные значения тепловой нагрузки и разности температур теплоносителя:

(14)

, (15)

где g – относительный расход – параметр, характеризующий соответствие расхода теплоносителя при фактической температуре наружного воздуха расчётному значению. Для систем отопления с качественным регулированием значение параметра g = 1;
– расчётный перепад температур тепловой сети: ; – расчётный перепад температур теплоносителя в нагревательных приборах: .

В безразмерном виде третье уравнение теплового потока будет выглядеть следующим образом:

(16)

. (17)

Таким образом три уравнения теплового потока образуют систему уравнений:

. (18)

При решении системы уравнений относительно температур теплоносителя t1, t2 и t3 получаются уравнения отопительного температурного графика качественного регулирования:

, (19)

, (20)

. (21)

Значения температур сетевой воды после смешения, t3 ф , °С и обратной от систем отопления, t2 ф , °С в диапазоне температур наружного воздуха, соответствующих спрямлению температурного графика на ГВС, а также «срезке» температурного графика:

, (22)

. (23)

Выбор температурного графика

Сразу нужно сделать оговорку: в данном разделе не будет описания выбора температурного графика для вновь строящихся (проектируемых) систем теплоснабжения. Речь пойдёт о выборе оптимального температурного графика.

В последние 5-7 лет на различных конференциях, форумах, посвящённых теплоснабжению, а также при обсуждении схем теплоснабжения перед их утверждением, РСО все чаще поднимают вопрос о «правильности» действующего в ТСО температурного графика и регулярно высказываются предложения по его снижению, вплоть до уровня 95/70°С. В качестве аргумента высказывается следующее: большинство действующих систем теплоснабжения спроектировано и построено еще в 60-70-е годы прошлого века, исходя из экономических особенностей того периода. Сейчас всё по-другому. Проверим, а по-другому ли на примере среднестатистической ТЭЦ.

Оптимальный температурный график – это такой график, при котором обеспечивается минимум затрат РСО на «доставку» потребителям тепловой энергии, т.е. минимум совокупных затрат на производство и на транспорт тепловой энергии.

Затраты (удельные) на транспорт (передачу) тепловой энергии складываются из расхода тепла на компенсацию тепловых потерь и расхода электроэнергии на циркуляцию сетевой воды. Также в этой группе будем учитывать сетевые насосы источника теплоты. По этому показателю (удельно) очень удобно сравнивать эффективность работы систем теплоснабжения между собой. Также его расчёт входит в состав нормативных энергетических характеристик тепловых сетей, которые должны разрабатываться не реже чем 1 раз в 5 лет для каждой системы теплоснабжения с присоединённой нагрузкой 50 Гкал/ч и более.

Для целей определения оптимального температурного графика абсолютные значения расхода топлива (удельного) не имеют практического значения, важно лишь его изменение в зависимости от того, по какому температурному графику производится отпуск тепла с источника. Для котельных удельный расход топлива практически не зависит от выбранного температурного графика, а вот для ТЭЦ всё индивидуально и определяется составом основного оборудования.

Именно поэтому п. 7.2 Свода правил СП 124.13330.2012 «Тепловые сети. Актуализированная редакция СНиП 41-02-2003» требует проведения технико-экономических расчётов для выбора температурного графика.

Далее приведен расчёт расходов на транспорт (передачу) тепловой энергии для среднестатистической системы теплоснабжения от ТЭЦ. В основу расчёта приняты усреднённые данные из утверждённых Схем теплоснабжения городов в Центре, Приволжье и на Урале.

Таблица 1. Исходные данные для расчёта расходов на транспорт (передачу) тепловой энергии
для среднестатистической системы теплоснабжения от ТЭЦ.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector