Как правильно подключить контактор
Как правильно подключить контактор
Как подключить магнитный пускатель
Для подачи питания на двигатели или любые другие устройства используют контакторы или магнитные пускатели. Устройства, предназначенные для частого включения и выключения питания. Схема подключения магнитного пускателя для однофазной и трехфазной сети и будет рассмотрена дальше.
Контакторы и пускатели — в чем разница
И контакторы и пускатели предназначены для замыкания/размыкания контактов в электрических цепях, обычно — силовых. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до 440 В постоянного тока и до 600 В переменного. Имеют:
- некоторое количество рабочих (силовых) контактов, через которые подается напряжение на подключаемую нагрузку;
- некоторое количество вспомогательных контактов — для организации сигнальных цепей.
Так в чем разница? Чем отличаются контакторы и пускатели. В первую очередь они отличаются степенью защиты. Контакторы имеют мощные дугогасительные камеры. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами. На малые токи — до 10 А — выпускают исключительно пускатели. Они, кстати, на большие токи не выпускаются.
Внешний вид не всегда так сильно отличается, но бывает и так
Есть еще одна конструктивная особенность: пускатели выпускаются в пластиковом корпусе, у них наружу выведены только контактные площадки. Контакторы, в большинстве случаев, корпуса не имеют, потому должны устанавливаться в защитных корпусах или боксах, которые защитят от случайного прикосновения к токоведущим частям, а также от дождя и пыли.
Кроме того, есть некоторое отличие в назначении. Пускатели предназначены для запуска асинхронных трехфазных двигателей. Потому они имеют три пары силовых контактов — для подключения трех фаз, и одну вспомогательную, через которую продолжает поступать питание для работы двигателя после того, как кнопка «пуск» отпущена. Но так как подобный алгоритм работы подходит для многих устройств, то подключают через них самые разнообразные устройства — цепи освещения, различные устройства и приборы.
Видимо потому что «начинка» и функции обоих устройств почти не отличаются, во многих прайсах пускатели называются «малогабаритными контакторами».
Устройство и принцип работы
Чтобы лучше понимать схемы подключения магнитного пускателя, необходимо разобраться в его устройстве и принципе работы.
Основа пускателя — магнитопровод и катушка индуктивности. Магнитопровод состоит из двух частей — подвижной и неподвижной. Выполнены они в виде букв «Ш» установленные «ногами» друг к другу.
Нижняя часть закреплена на корпусе и является неподвижной, верхняя подпружинена и может свободно двигаться. В прорези нижней части магнитопровода устанавливается катушка. В зависимости от того, как намотана катушка, меняется номинал контактора. Есть катушки на 12 В, 24 В, 110 В, 220 В и 380 В. На верхней части магнитопровода есть две группы контактов — подвижные и неподвижные.
Устройство магнитного пускателя
При отсутствии питания пружины отжимают верхнюю часть магнитопровода, контакты находятся в исходном состоянии. При появлении напряжения (нажали кнопку пуск, например) катушка генерирует электромагнитное поле, которое притягивает верхнюю часть сердечника. При этом контакты меняют свое положение (на фото картинка справа).
При пропадании напряжения электромагнитное поле тоже исчезает, пружины отжимают подвижную часть магнитопровода вверх, контакты возвращаются в исходное состояние. В этом и состоит принцип работы эклектромагнитного пускателя: при подаче напряжения контакты замыкаются, при пропадании — размыкаются. Подавать на контакты и подключать к ним можно любое напряжение — хоть постоянное, хоть переменное. Важно чтобы его параметры не были больше заявленных производителем.
Так выглядит в разобранном виде
Есть еще один нюанс: контакты пускателя могут быть двух типов: нормально замкнутыми и нормально разомкнутыми. Из названий следует их принцип работы. Нормально замкнутые контакты при срабатывании отключаются, нормально разомкнутые — замыкаются. Для подачи питания используется второй тип, он и есть наиболее распространенным.
Схемы подключения магнитного пускателя с катушкой на 220 В
Перед тем, как перейдем к схемам, разберемся с чем и как можно подключать эти устройства. Чаще всего, требуются две кнопки — «пуск» и «стоп». Они могут быть выполнены в отдельных корпусах, а может быть единый корпус. Это так называемый кнопочный пост.
Кнопки могут быть в одном корпусе или в разных
С отдельными кнопками все понятно — у них есть по два контакта. На один подается питание, со второго оно уходит. В посте есть две группы контактов — по два на каждую кнопку: два на пуск, два на стоп, каждая группа со своей стороны. Также обычно имеется клемма для подключения заземления. Тоже ничего сложного.
Подключение пускателя с катушкой 220 В к сети
Собственно, вариантов подключения контакторов много, опишем несколько. Схема подключения магнитного пускателя к однофазной сети более простая, потому начнем с нее — будет проще разобраться дальше.
Питание, в данном случае 220 В, полается на выводы катушки, которые обозначены А1 и А2. Оба эти контакта находятся в верхней части корпуса (смотрите фото).
Сюда можно подать питание для катушки
Если к этим контактам подключить шнур с вилкой (как на фото), устройство будет находится в работе после того, как вилку вставите в розетку. К силовым контактам L1, L2, L3 можно при этом подавать любое напряжение, а снимать его можно будет при срабатывании пускателя с контактов T1, T2 и T3 соответственно. Например, на входы L1 и L2 можно подать постоянное напряжение от аккумулятора, которое будет питать какое-то устройство, которое подключить надо будет к выходам T1 и T2.
Подключение контактора с катушкой на 220 В
При подключении однофазного питания к катушке неважно на какой вывод подавать ноль, а на какой — фазу. Можно провода перекинуть. Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса. И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1.
Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Но есть гораздо более интересные варианты. Например, подавать питание на катушку можно через реле времени или датчик освещенности, а к контактам подключить линию питания уличного освещения. В этом случае фаза заводится на контакт L1, а ноль можно взять, подключившись к соответствующему разъему выхода катушки (на фото выше это A2).
Схема с кнопками «пуск» и «стоп»
Магнитные пускатели чаще всего ставят для включения электродвигателя. Работать в таком режиме удобнее при наличии кнопок «пуск» и «стоп». Их последовательно включают в цепь подачи фазы на выход магнитной катушки. В этом случае схема выглядит как на рисунке ниже. Обратите внимание, что
Схема включения магнитного пускателя с кнопками
Но при таком способе включения пускатель будет в работе только то время, пока будет удерживаться кнопка «пуск», а это не то, что требуется для длительной работы двигателя. Потому в схему добавляют так называемую цепь самоподхвата. Ее реализуют при помощи вспомогательных контактов на пускателе NO 13 и NO 14, которые подключаются параллельно с пусковой кнопкой.
Схема подключения магнитного пускателя с катушкой на 220 В и цепью самоподхвата
В этом случае после возвращения кнопки ПУСК в исходное состояние, питание продолжает поступать через эти замкнутые контакты, так как магнит уже притянут. И питание поступает до тех пор, пока цепь не будет разорвана нажатием клавиши «стоп» или срабатыванием теплового реле, если такое есть в схеме.
Питание для двигателя или любой другой нагрузки (фаза от 220 В) подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T.
Подробно показано в какой последовательности лучше подключать провода в следующем видео. Вся разница в том, что использованы не две отдельные кнопки, а кнопочный пост или кнопочная станция. Вместо вольтметра можно будет подключить двигатель, насос, освещение, любой прибор, который работает от сети 220 В.
Подключение асинхронного двигателя на 380 В через пускатель с катушкой на 220 В
Эта схема отличается только тем, что в ней подключаются к контактам L1, L2, L3 три фазы и также три фазы идут на нагрузку. На катушку пускателя — контакты A1 или A2 — заводится одна из фаз. На рисунке это фаза B, но чаще всего это фаза С как менее нагруженная. Второй контакт подсоединяется к нулевому проводу. Также устанавливается перемычка для поддержания электропитания катушки после отпускания кнопки ПУСК.
Схема подключения трехфазного двигателя через пускатель на 220 В
Как видите, схема практически не изменилась. Только в ней добавилось тепловое реле, которое защитит двигатель от перегрева. Порядок сборки — в следующем видео. Отличается только сборка контактной группы — подключаются все три фазы.
Реверсивная схема подключения электродвигателя через пускатели
В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Например, для работы лебедки, в некоторых других случаях. Изменение направления вращения происходят за счет переброса фаз — при подключении одного из пускателей две фазы надо поменять местами (например, фазы B и C). Схема состоит из двух одинаковых пускателей и кнопочного блока, который включает общую кнопку «Стоп» и две кнопки «Назад» и «Вперед».
Реверсивная схема подключения трехфазного двигателя через магнитные пускатели
Для повышения безопасности добавлено тепловое реле, через которое проходят две фазы, третья подается напрямую, так как защиты по двум более чем достаточно.
Пускатели могут быть с катушкой на 380 В или на 220 В (указано в характеристиках на крышке). В случае если это 220 В, на контакты катушки подается одна из фаз (любая), а на второй подается «ноль» со щитка. Если катушка на 380 В, на нее подаются две любые фазы.
Также обратите внимание, что провод от кнопки включения (вправо или влево) подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя. Рядом с катушкой пускателей изображены контакты KM1 и KM2. Таким образом реализуется электрическая блокировка, которая не дает одновременно подать питание на два контактора.
Магнитный пускатель с установленной на нем контактной приставкой
Так как нормально замкнутые контакты есть не во всех пускателях, можно их взять, установив дополнительный блок с контактами, который называют еще контактной приставкой. Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса.
На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен.
Схемы подключения магнитного пускателя (контактора) и принцип действия
Схема подключения магнитного пускателя (малогабаритного контактора «КМ») не представляет сложности для опытных электриков, но для новичков может вызвать немало трудностей. Поэтому это статья для них.
Цель статьи максимально просто и наглядно показать сам принцип действия (работы) магнитного пускателя (далее МП) и малогабаритного контактора (далее КМ). Поехали.
МП и КМ являются коммутационными аппаратами, которые осуществляют управление и распределение рабочих токов по подключенным к ним цепям.
МП и КМ в основном используются для подключения и отключения асинхронных электродвигателей, а также их реверсивного переключения используя дистанционное управление. Они применяются для дистанционного управления группами освещения, нагревательными цепями и другими нагрузками.
Компрессоры, насосы и кондиционеры, тепловые печи, ленточные конвейера, цепи освещения вот где и не только можно встретить МП и КМ в системах их управления.
Чем отличаются магнитный пускатель и малогабаритный контактор, по принципу действия — ничем. По сути, это электромагнитные реле.
Найденное различие у контактора – мощность — определяется габаритами, а у пускателя величинами, а предельная мощность МП бывает больше чем у контактора.
Наглядные схемы МП и КМ
Условно МП (или КМ) можно разделить на две части.
В одной части силовые контакты, которые выполняют свою работу, а в другой части электромагнитная катушка, которая включает и отключает эти контакты.
- В первой части находятся силовые контакты (подвижные на диэлектрической траверсе и неподвижные на диэлектрическом корпусе), они то и осуществляют подключение силовых линий.
Траверса с силовыми контактами прикреплена к подвижному сердечнику (якорю).
В нормальном состояние эти контакты разомкнуты и по ним не протекает ток, нагрузка (в данном случае лампы) находится в состоянии покоя.
Удерживает их в таком состоянии возвратная пружина. Которая изображена змейкой во второй части ( 2 )
- Во второй части мы видим электромагнитную катушку, на которую не подается ее рабочее напряжение, вследствие чего, она находится в состоянии покоя.
При подаче напряжения на обмотку катушки в ее контуре создается электромагнитное поле, образуя ЭДС (электродвижущую силу), которая притягивает к себе подвижный сердечник (подвижная часть магнитопровода — якорь) с закреплёнными на нем силовыми контактами. Они, соответственно, замыкают подключенные через них цепи, включая нагрузку (рис. 2).
Естественно, если прекратить подачу напряжения на катушку, то пропадет электромагнитное поле (ЭДС), якорь перестаёт удерживаться и под действием пружины (вместе с закрепленными к нему подвижными контактами) возвращается в исходное состояние, размыкая цепи силовых контактов (рис. 1).
Из этого видно, что пускатель (и контактор) управляются подачей и отключением напряжения на их электромагнитной катушке.
Схема МП
- Силовые контакты МП
- Катушка, возвратная пружина, дополнительные контакты МП
- Кнопочный пост (кнопки пуск и стоп)
к оглавлению ↑
Принципиальная схема подключения МП
Схема привязки основных элементов принципиальной схемы с МП
Как видно из рисунка 5 со схемой в состав МП входят и дополнительные блок контакты, которые бывают нормально разомкнутыми и нормально замкнутыми они могут использоваться для управления подачи напряжения на катушку, а также для других действий. Например, включать (или выключать) схему сигнальной индикации, которая будет показывать режим работы МП в целом.
Схема подключения по факту с привязкой контактных групп к принципиальной схеме МП
Рис. 6 Увеличить рис. 6 Фазное подключение (220 В; ноль — фаза)
На схеме (рис. 6) через перемычки мы берем напряжение, подаваемое на силовые контакты МП для дальнейшего его использования в управлении катушкой через кнопочный пост.
Данный кнопочный пост имеет две клавиши: «Пуск» (контакты которой нормально разомкнуты) и клавиши «Стоп» (контакты которой нормально замкнуты).
При нажатии кнопки «Пуск» питание попадает на катушку напрямую, при этом она срабатывает, притягивая якорь с траверсой, на котором расположены силовые контакты, цепи силовых контактов замыкаются.
А также замыкается дополнительный блок контакт, к которому подключена катушка.
На другой стороне дополнительного контакта подключен провод, который соединен с контактом кнопки «Стоп» (контакты которой нормально замкнуты).
После возвращения кнопки «Пуск» в исходное положение (нормально разомкнутая), через нее перестает подаваться напряжение на катушку, но оно (это же напряжение) начинает дублироваться через замкнутый дополнительный контакт и подключенный нему провод, который подключен к кнопке «Стоп».
И только после нажатия кнопки «Стоп» цепь с питающим напряжением на катушку МП разрывается и полностью обесточивает катушку. Вследствие чего пропадает её электромагнитное поле, якорь перестает удерживаться и под воздействием возвратной пружины размыкает силовые контакты, а также дополнительный (нормально разомкнутый) контакт.
Схема КМ
- Силовые контакты МП
- Катушка, возвратная пружина, дополнительные контакты МП
- Кнопочный пост (кнопки пуск и стоп)
к оглавлению ↑
Принципиальная схема подключения КМ
Схема привязки основных элементов принципиальной схемы с КМ
Схема подключения по факту с привязкой контактных групп к принципиальной схеме КМ
Рис. 10 Увеличить рис. 10 Фазное подключение (220 В; ноль — фаза)
Принцип действия КМ и его катушки (на данной схеме рис. 10) аналогичный описанному выше. Одно из конструктивных отличий то, что дополнительный контакт расположен на траверсе в одном ряду с силовыми контактами.
Обратите внимание, что напряжение катушек на схемах — 220 и 380 вольт. Это значит, что катушки должны быть подключены согласно их номинальному напряжению.
Фазное подключение (фаза, нейтраль — проще ноль) соответствует 220 В, линейное подключение (фаза, фаза) 380 В.
Есть также катушки на 12, 24, 36, 42, 110 вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение.
Наглядные электрические схемы подключения электродвигателя с использованием магнитного пускателя (либо малогабаритного контактора)
Схема подключения МП (или КМ) с катушкой на 380 В
- Кн «СТОП» – кнопка «Стоп»
- Кн «ПУСК» – кнопка «Пуск»
- КМП – катушка МП (магнитного пускателя)
- Кн МП – силовые контакты МП
- БК – блок контакт МП
- Тр – нагревательный элемент теплового реле
- КТР – контакт теплового реле
- М – электродвигатель
к оглавлению ↑
Схемы подключения МП (или КМ) с катушкой на 220 В
- Кн «СТОП» – кнопка «Стоп»
- Кн «ПУСК» – кнопка «Пуск»
- КМП – катушка МП (магнитного пускателя)
- Кн МП – силовые контакты МП
- БК – блок контакт МП
- Тр – нагревательный элемент теплового реле
- КТР – контакт теплового реле
- М – электродвигатель
Схема подключения электродвигателя (рекомендуемый тип подключения обмоток треугольник) на 220 В
Обозначение элементов аналогично на сх. Выше
Обратите внимание, в схеме участвует тепловое реле, которое через свой дополнительный контакт (нормально замкнутый) дублирует функцию кнопки «Стоп» в кнопочном посте.
Принцип действия магнитного пускателя и малогабаритного контактора + Видео пояснение
Важно , на схемах для наглядности магнитный пускатель показан без дугогасящей крышки, без которой его эксплуатация – запрещена!
Иногда возникает вопрос, зачем вообще использовать МП или КМ, почему просто не использовать трехполюсной автомат?
- Автомат рассчитан до 10 тысяч отключений – включений, а у МП и КМ этот показатель измеряется миллионами
- При скачках напряжений МП (КМ) отключит линию, сыграв роль защиты
- Автоматом невозможно управлять, дистанционно применяя небольшое напряжение
- Автомат не сможет выполнять дополнительные функции включения и отключения дополнительных цепей (например, сигнальных) из–за отсутствия у него дополнительных контактов
Одним словом автомат отлично справляется со своей основной функцией защиты от коротких замыканий и перенапряжений, а МП и ПМ со своей.
На этом все, думаю, что принцип действия МП и КМ понятен, более наглядное пояснение смотрите в видео.
Удачного и безопасного вам монтажа!
В дополнение к статье прилагаю техническую документацию контакторов серии КМИ
Контакторы серии КМИ
Нормативная и техническая документация
По своим конструктивным и техническим характеристикам контакторы серии КМИ соответствуют требованиям российских и международных стандартов ГОСТ Р 50030.4.1,2002, МЭК60947,4,1,2000 и имеют сертификат соответствия РОСС CN.ME86.B00144. Контакторам серии КМИ по Обще- российскому классификатору продукции присвоен код 342600.
Условия эксплуатации
Категории применения: АС,1, АС,3, АС,4. Температура окружающей среды
– при эксплуатации: от –25 до +50 °С (нижняя предельная температура –40 °С) ;
– при хранении: от –45 до +50 °С .
Высота над уровнем моря, не более: 3000 м .
Рабочее положение: вертикальное, с отклонением ±30° .
Вид климатического исполнения по ГОСТ 15150,96: УХЛ4 .
Степень защиты по ГОСТ 14254,96: IP20 .
Структура обозначения
При подборе контакторов КМИ обращайте внимание на структуру условного обозначения
Как правильно подключить контактор?
Контактор используется для дистанционного управления электродвигателями и другими электротехническими устройствами (кондиционер, насос, электропечка и так далее). Этот прибор относится к коммутационному оборудованию. В принципе, для опытного электрика подключение особых трудностей не вызовет. А вот новичкам придется сложно, поскольку нужно, как минимум, знать базовые принципы монтажа.
Основные моменты.
Прежде чем приступать к подключению, нужно выяснить, а что собой представляет устройство. Состоит оно из следующих элементов:
– главные контакты;
– электромагнитная система;
– дугогасительные элементы;
– дополнительные контакты.
Главные контакты – основа работы контактора. Они отвечают за замыкание и размыкание цепи, позволяют при большой частоте производить частые включения и отключения, а также проводят номинальный ток длительный период времени. Следите за положением контактов. Они не должны соприкасаться с механическими защелками и втягивающей катушкой.
Благодаря электромагнитной системе, происходит дистанционное управление. В ее основе: катушка, якорь, сердечник и крепежные детали. Системы могут быть различной конструкции, в зависимости от кинематической схемы контактора, рода тока или цепи.
Дугогасительные элементы обеспечивают при размыкании контактов гашение электрической дуги. Существует несколько способов это осуществить, и зависят они от режимов работы прибора.
Дополнительные контакты работают в цепях управления, где производят переключение. Они могут длительное время проводить ток, но не более 20 ампер, а отключить его могут при показателе 5 ампер.
Принципы монтажа.
Сразу обозначим, что схема управления включает множество элементов и устройств, она не ограничивается контактором. Обязательно нужен автоматический выключатель с соответствующим номиналом, который зависит от предельного тока пускателя. Обратите внимание и на токо-временную характеристику. Ее выбирают в зависимости от устойчивости прибора к индуктивным нагрузкам.
Заранее продумайте, где будет установлено устройство. Если контактор магнитный, он охлаждается автоматически. Поэтому для него нужно выбрать место с достаточным внутренним пространством или вентиляционными отверстиями. Помните, что прибор прикрепляется к основанию, для которого главное условие – отсутствие вибраций. Иначе может произойти случайный отброс втягивающего штока и, соответственно, размыкание цепи.
И конечно, контактор должен быть изолирован от внешней среды. Попадание вовнутрь влаги или пыли обязательно приведет к поломке. Но тут все зависит от класса защиты, некоторые устройства отлично переносят вышеперечисленное. Внимательно прочитайте правила эксплуатации и создайте соответствующие условия.
Коммутируемая нагрузка.
Для подключения силовых цепей лучше использовать винтовые зажимы (с седлом или прижимной планкой). Но прежде цепи необходимо собрать. Во время этого процесса профессионалы рекомендуют обеспечить максимальную площадь для соприкосновения контактной площадки и кабельных жил. Для многопроволочных жил берите штыревой наконечник, он поможет хорошо их обжать. А однопроволочные сворачивайте в кольцо.
Главные контакты делятся на пару подвижных и неподвижных. Они представлены на каждом полюсе и соединены токопроводящей пластиной. Располагаются параллельно друг к другу. На лицевой части корпуса находятся прижимные винты. Для подключения необходимо ввести наконечник жилы в седло или прижимную планку (до самого основания), а затем хорошо зажать винтом. Через двое суток выполните перетяжку (чтобы устранить остаточную деформацию металла).
Направляющие цепи.
При включении положение контактора остается без механической фиксации. Чтобы поддерживать шток в процессе работы, нужно создать систему самоподхвата. Для этого понадобится блокировочный, полностью открытый контакт (используется в качестве дополнительного). Через него подключаем цепь питания катушки к пусковой кнопке. Затем параллельно соединяем второй контур. В его основе – соединенные блокировочные контакты и один замкнутый контакт кнопки “Стоп”. В итоге, когда включается контактор, блокирующий контакт замыкается на все время работы и подает ток в катушку. Если нужно разомкнуть цепь, достаточно просто нажать на “стоп”.
В эту схему могут включаться и другие составляющие, например защитные приборы, различные датчики, концевые выключатели. Но само подключение в разы усложняется, поэтому новичкам лучше воспользоваться самым простым методом.
Дополнительные модули.
Они расширяют возможности контактора за пределы коммутационных и обеспечивают пользователю и прибору дополнительную защиту. К таким можно отнести блокирующие контакты. Когда они изначально включены в конструкцию прибора, осуществить схему самоподхвата куда проще. А также их можно использовать для создания более сложной автоматизации и индикации.
Хорошо, если устройство включает в себя тепловые расцепители. Они контролируют нагрузку внутри цепи и в случае превышений допустимых значений тока выключают прибор. Реле времени также являются неплохим дополнением. С их помощью можно реализовать замедленный пуск или остановку электропривода.
Для удобства продают пусковые приставки, которые уже оснащены схемой самоподхвата и кнопками “пуск” и “стоп”. Но использовать их можно, только если управление осуществляется со щитка или шкафа. Иногда катушка может не подходить для напряжения управляющей цепи, но ее можно заменить на соответствующую.
Схемы подключения.
А теперь перейдем к главному вопросу. Схем всего три, у каждой свои особенности, преимущества и недостатки. Самая первая – прямая коммутация фаз. Она же и самая простая. В данном случае контактор используется для дистанционного включения и отключения. Как подключить главные контакты уже описано выше.
Для трехфазных асинхронных машин нужна схема сложнее. Для управления их прямым и обратным вращением нужно установить в паре два контактора. Отходящие провода фаз соединяются с помощью параллельного подключения. Обратите внимание, что провода, близкие к подаче питания, соединяются перекрестной перемычкой, которая должна менять последовательность любых двух-трех фаз. При этом способе важно защитить прибор от встречного включения. Защита должна быть двухсторонней. Используется и механическая блокировка, и блокировочные контакты.
Если у асинхронного мотора высокая мощность, нужно создать пусковую схему. И для этого вновь понадобятся два контактора. Один из них будет пусковым. Используя схему соединения обмоток, двигатель подключается в “звезду”. Это позволяет снизить пусковые токи. Через время мотор выходит на номинальные обороты и присоединяется второй контактор. В данном случае обмотки соединяются в “треугольник”. Но для этой схемы обязательно наличие реле задержки (устанавливается на основном приборе), нулевой проводник и прокладка к двигателю.
Как подключить освещение через контактор и в каких случаях это нужно?
Контактор — это электромагнитный коммутационный прибор, по своему устройству он почти такой же, как и обычное реле. Он состоит из трёх основных элементов:
- Катушка — при подаче на неё напряжения замыкаются (включаются) или размыкаются (отключаются) группы контактов. В магазинах можно найти контакторы с катушками, которые управляются разным напряжением. Наибольшее распространение получили контакторы с катушками на 220 и 380В переменного тока, но есть и с низким номинальным напряжением (24В). Первые могут использоваться в однофазных сетях, для вторых обязательно наличие трёх фаз. Клеммы катушки на корпусе современного контактора обозначаются так — A1, A2.
- Силовые контакты — к ним подключается нагрузка. Количество контактов также называют числом полюсов. Есть разные варианты, на практике чаще применяются 3 и 2-полюсные контакторы. При заказе в интернет-магазинах обращайте внимание на число полюсов и нормальное состояние контактов (замкнуты или разомкнуты при отсутствии напряжения на катушке). Входные контакты, которые подключаются к сети обычно обозначаются как L1, L2, L3 или цифрами 1, 3, 5. А выходные, к которым подключается нагрузка — T1, T2, T3 или цифрами 2, 4, 6.
- блок-контакты — маломощные контакты, которые нужны для самоподхвата (чтобы контактор оставался включенным после снятия управляющего сигнала или после того, как вы отпустите кнопку кнопочного поста), а также для систем индикации и сигнализации состояния цепей.
Часто для управления контакторами используют кнопочные посты. Это устройства, содержащие 1 и более кнопок без фиксации с нормальной-замкнутым и нормально-разомкнутым контактом (на задней стороне 2 пары клемм для подключения, по одной для каждой из пар контактов. Пример кнопочного поста вы можете видеть на рисунке ниже. Они применяются в схемах с самоподхватом пускателя (именно такую мы рассмотрим далее), либо без него — в схемах управления грузоподъёмными механизмами (в пределах этой статьи мы не будем их рассматривать.
Зачем нужно подключать освещение через контактор?
Нам известны три случая, когда без реле или контактора в схеме освещения не обойтись, это может быть:
1. Много мощных светильников — большая нагрузка.
2. Нужно включать или выключать всё освещение одновременно с одного места или наоборот всё освещение электроустановки нужно включать и выключать с нескольких мест, удалённых друг от друга.
3. Несовместимость автоматики со схемой питания светильника.
Рассмотрим каждый из них отдельно.
Случай первый: Много мощных источников света.
Например, при организации, освещения складского помещения, выставочного, торгового зала и других подобных объектов большой площади устанавливают ряд мощных светильников. Использовать обычный выключатель нельзя, так как зачастую бытовой выключатель света рассчитан на 10А.
К тому же ставить выключатели каждой из групп светильников непосредственно рядом с ними — нерационально, так как для включения света нужно пройти через всё помещение. Можно, конечно, установить выключатели каждой из групп светильников в одном месте, но тогда несколько усложняется организация автоматического управления.
Поэтому если нужно организовать включение и отключения освещения с одного места, например, пульта службы охраны, диспетчерской или кнопочного поста, установленного у входа на эту территорию, используют контакторы.
Подключение освещения через контактор позволит и просто организовать управление светом с любого числа мест без использования проходных и перекрестных выключателей, что в некоторой мере упростит схему.
Как подключить контактор?
Контакторы относятся к коммутационному оборудованию для управления в основном трехфазными двигателями. У контакторов главная задача — это включение, выключение и реверс на расстоянии, которое определяется конкретным расположением движков. Но двигатели — это не единственные потребители электроэнергии, с которыми контакторы могут использоваться. Любые другие виды нагрузок можно так же дистанционно коммутировать этими коммутаторами. В принципе, они являются конструктивной разновидностью магнитного пускателя.
Принципиальное устройство
Контактор состоит из нескольких узлов:
- Энергетического.
- Силового.
- Коммутационного.
Энергетический узел обеспечивает формирование электромагнитного поля, достаточного для получения определенной однонаправленной силы. Это поле появляется как следствие протекания электрического тока через катушку с сердечником. Его форма делается либо П-, либо Ш-образной, в зависимости от конструкции этого коммутационного изделия.
Силовые линии магнитного поля наиболее сконцентрированы вблизи сердечника, и поэтому силовой узел выполнен так, чтобы воздействие на него со стороны энергетического узла получилось максимальным. Для более равномерного усилия, возникающего при протекании через катушку переменного тока, в ней делается короткозамкнутый виток. Он играет роль демпфера, который препятствует дребезгу контактов с частотой 50 Гц. Если катушка питается постоянным током, на ее сердечнике располагается диэлектрическая прокладка для предотвращения слипания намагнитившихся деталей.
Силовой узел содержит подвижный подпружиненный ферромагнитный элемент — якорь, который притягивается к неподвижному сердечнику катушки, передавая силу коммутационному узлу. В нем расположены контакты. Их число может быть различным, в зависимости от конструкции контактора. Для управления электродвигателями в трехфазных сетях контактов бывает три-четыре — одинаковых по своим характеристикам. Но могут быть и дополнительные маломощные контакты, используемые для управления вспомогательными элементами схемы.
- Расположение дополнительных контактов определяют отличие контактора от магнитного пускателя. Они располагаются в группе с основными контактами, а не сбоку, как в магнитном пускателе.
Кроме контактов в коммутационном блоке расположены камеры для гашения электрической дуги.
Как работает
Пружина силового узла удерживает контакты в разомкнутом состоянии. Когда усилия со стороны якоря становится достаточно для преодоления упругих сил пружины, силовой и коммутационный узлы приходят в движение. Якорь деформирует пружину, одновременно увлекая за собой контакты, — происходит их замыкание. Якорь соприкасается с сердечником катушки и удерживается ее электромагнитным полем. После обесточивания катушки пружина возвращается в исходное состояние вместе с якорем и контактами.
Для нормальной работы контактора на клеммы его катушки подается напряжение строго определенной величины. Для контакторов, используемых в электросетях, это 220 и 380 В. Поэтому надо правильно сделать присоединение катушки к трехфазной сети. Если номинальное напряжение контактора — 220 В, катушка присоединяется к любой из фаз (к фазному напряжению). А если 380 В — между любыми двумя фазами (к линейному напряжению).
Для управления контактором применяется кнопочная станция. Она состоит из двух кнопок:
- нормально разомкнутой для включения;
- нормально замкнутой для выключения.
Схема подключения контактора объединяет дополнительный контакт и кнопочную станцию. Кнопка, предназначенная для включения, и дополнительный контакт соединяются параллельно, и через них напряжение подается на катушку. Нажатие на кнопку включения замыкает цепь катушки. Якорь приходит в движение и замыкает все контакты. Дополнительный контакт делает ненужной для питания катушки кнопку включения. Поэтому после срабатывания контактора ее можно отпустить.
Состояние контактора при этом не изменится. Он останется во включенном состоянии. Но контакты кнопки выключения замкнуты до тех пор, пока кнопка не нажата. Нажимаем на нее — цепь питания катушки разрывается. Магнитное поле исчезает, и контакты под воздействием пружины контактора размыкаются. Цепь питания катушки разрывается еще и по дополнительному контакту. Поэтому кнопку выключения можно отпустить, и это никак не повлияет на состояние контактора.
Особенности схем
Из иллюстраций, на которых показано, как устроен контактор, очевидно, что в нем нет какой-либо защиты. Но эксплуатировать схемы, в которых нет хотя бы плавких предохранителей, недопустимо. Особенно при наличии несварных и неспаянных соединений проводов и кабелей. В соединениях, выполненных с использованием метизов, при ослаблении прилегания контактов лавинообразно увеличивается переходное сопротивление. И, как следствие этого, нагрев токопроводящей жилы, расплавление изоляции, короткое замыкание и, возможно, воспламенение чего-либо.
Подобное ухудшение контакта может быть в любом электротехническом изделии, в котором провод прижимается винтом. Если этим изделием будет автоматический выключатель, в котором имеется тепловая защита, он отключится из-за нагревания корпуса. Однако контактор или магнитный пускатель такой защиты не имеют. Поэтому регулярный периодический осмотр и плавкие предохранители — единственная мера противодействия таким неисправностям.
Схема с контакторами (магнитными пускателями) всегда дополняется защитными элементами. В электроприводах, в которых эти коммутаторы находят самое широкое применение, такими элементами являются тепловые реле. Пример схемы электропривода с использованием контактора и тепловых реле показан далее.
1 — автоматический выключатель;
2 — кнопочная станция (альтернативное название «кнопочный пост»);
3 — дополнительные контакты (в данной схеме — магнитного пускателя);
4 — основные контакты (в данной схеме — магнитного пускателя);
5 — катушка магнитного пускателя;
6 — элементы термореле;
7 — трехфазный двигатель.
Дополнительные сведения
Принципиальной разницы между контактором и магнитным пускателем нет, и об этом уже было сказано выше. Их задача тоже одинаковая — дистанционное включение и выключение нагрузки. Схемы, в которых применяются эти разновидности коммутаторов, также идентичны. При описании схем используются некоторые специфические термины. Остановимся на них далее для полноты информации.
«Самоподхват». Это значит, что кнопка включения в кнопочной станции соединена параллельно с контактом, замыкающимся от действия катушки, питание которой начинается немедленно при нажатии на упомянутую кнопку. Самоподхват хотя и не упоминался ранее, но он присутствует в каждой из схем, показанных выше.
«Реверс». Схема с реверсом предусматривает получение из двух контакторов или магнитных пускателей переключение обмоток двигателя для изменения вращения его ротора на противоположное. Пример такой схемы приведен ниже.